

Managing Builds using Ant

Managing Builds using Ant
 Version 0.1, Draft

[image: image1.jpg]aSI\MSUNG

mobile innovakor

INFO
COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions, use or disclosure of this material, or any part thereof, is strictly prohibited and is a violation under the Copyright Law. Samsung Electronics reserves the right to make changes in specifications at any time and without notice. The information furnished by Samsung Electronics in this material is believed to be accurate and reliable, but is not warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of Sun Microsystems.
All other company and product names may be trademarks of the respective companies with which they are associated.

About This Document

This document is intended for JAVA ME developers who are involved in building and packaging applications. Ant tool gives more control over building process and provides lots of extra features.
Scope
This document is about building and packaging JAVA ME applications using Ant tool. It assumes basic knowledge of xml and building & packaging procedure.
To know more about Java ME basics and Java programming language, refer to the Knowledge Base under Samsung Mobile Innovator (SMI).
http://innovator.samsungmobile.com/platform.main.do?platformId=3
Table of Contents
5Introduction

5Why use Ant

5Installation

5Setup

6Verify installation

6Ant in detail

6Building blocks

7Sample build.xml explained

10Running Ant

Introduction
Apache Ant is an open source Java based build tool under the Apache Software License. Essentially Ant is to Java like make is to C/C++. It helps you to proficiently organize your code from build, test, deploy and execute. As well assist in multiple levels in debugging or optimization, custom packaging and is easily configurable when interfacing with 3rd party tools such as obfuscators.
Why use Ant
As compare to other building & packaging tools Ant provides greater control over builds. Adding steps like obfuscation, multiple levels of debugging, custom packaging, or dealing with other third-party products requires customization which is provided by Ant.
Ant's XML-based configuration files provide an open, standard way of defining builds which is much more flexible and less error-prone. Using the same build tool for all your projects simplifies your life and keeps things easier to manage. Many developers (especially Java developers) are already using Ant.
Installation

Get the binary distribution from http://ant.apache.org and install. Just decompress the archive and set system path & variable. Decompression gives a folder structure, bin and lib directories are required to run Ant.

Setup
· Add bin directory to system path.
· Set the ANT_HOME environment variable to the directory where you installed Ant.
Verify installation
Open command prompt and type ant, you should get message like below.

Buildfile: build.xml does not exist!

Build failed

This shows that Ant is installed but not able to find required build.xml. Type ant –version, you should get like below.

Apache Ant(TM) version 1.8.2 compiled on December 20 2010

Ant in detail
Ant tool requires some instructions for building and packaging which are provided in build.xml file. This file is customized for each project on need basis.
Building blocks

· Tasks: Tasks correspond to command line tasks like javac, war etc. A group of tasks can be executed in a sequence by specifying targets.
· Target: It is like a function where you put reusable tasks so that it can be called later without duplicating them.
· Property: This element is used to define variables in your build file which is useful when the value like project_name or folder_name keeps on changing. These properties can be kept externally in some file like below build.properties:
root.dir=..

lib.dir=lib

src.dir=com

conf.dir=etc

web.content=

project.name=MyProject
build.dir=build

Sample build.xml explained
A sample build.xml is given below:

<project name="MyProject" default="compile" basedir="..">

<property name="midp" value="C:/Samsung_SDK_122"/>

<property name="midp_lib" value="${midp}/lib/midpapi.zip"/>

<target name="compile" depends="init">

<mkdir dir="build/classes"/>

<javac destdir="build/classes" srcdir="src"

bootclasspath="${midp_lib}" target="1.1"/>

</target>

<target name="init">

<tstamp/>

</target>

</project>

This file would work for a simple project, with /myproject/src containing the source files and /myproject/build containing the build.xml file. This example only compiles your source files.
The first three lines set up some properties that will be used throughout the build process:

· Line #1 gives our project a name, and sets the default target to be "compile." This setting just indicates that if we run "ant" with no parameters it will try to build the "compile" target first. We also specify the base directory for the project to be the parent (default) directory.

· Line #2 sets the "midp" property. Ant needs to know where the wireless toolkit is installed because it needs to find the MIDP classes, the preverifyer, the emulator, and other pieces of the wireless toolkit.

· Line #3 sets the "midp_lib" property. Ant needs the location of the MIDP classes for compilation.
The compile target simply specifies how to compile this MIDlet. It uses Ant's javac task to specify the source and destination directories for class files, to identify the bootclasspath (the path to the MIDP classes), and to set the target VM to be version 1.1. This target also creates a "classes" directory under the "build" directory for your compiled classes.

Notice that the compile target depends on the init target, so when Ant runs this build.xml it calls the init target first, then the compile target. The init target typically takes care of any needed housekeeping, so it should appear in the ‘depends’ clause of all other targets. In this case it simply sets the timestamp formats, but we could also have it create directories or perform other preliminary tasks.

· Preverification: MIDlet classes must be preverified before they can be run - a step not needed in most other Java development. To preverify your classes after compilation, simply add a "preverify" target to your build file:
<target name="preverify" depends="compile">

<mkdir dir="build/preverified"/>

<exec executable="${midp}/bin/preverify">

<arg line="-classpath ${midp_lib}"/>

<arg line="-d build/preverified"/>

<arg line="build/classes"/>

</exec>

</target>

This target instructs the preverify command to verify all the classes in build/classes, and place the verified classes in build/preverified.

· Obfuscation: MIDlet developers often use an obfuscator to reduce the sizes of MIDlet class files. Calling the obfuscator is typically as simple as adding another target to your build file. Obfuscation is done before preverification, so make sure that depends attributes are in the right order.

<target name="obfuscate" depends="compile">

<mkdir dir="build/jax"/>

<java fork="yes" classname="com.ibm.jax.Batch"

classpath="${jax};${midp_lib}">

<sysproperty key="HOME" value="build"/>

<sysproperty key="MIDP_HOME" value="${midp}"/>

<arg line="build/myprog.jax"/>

</java>

<mkdir dir="build/obfuscated"/>

<unjar src="/mobility/midp/articles/ant/build/jax/myprog_jax.zip"

dest="build/obfuscated"/>

</target>
This example uses Ant's java task to call the JAX obfuscator, which relies on several environment variables and the myprog.jax configuration file. For this example, you'll also need to set the jax property at the beginning of your build.xml file.
· Packaging: Once your classes are compiled, obfuscated, and preverified you must package them in a jar file. Again, you simply create another target to create the jar file. Ant's jar task takes a few parameters and creates the jar file from your verified classes. You need to create a .jad file as well, which in this example is simply copied over from the bin directory.
<target name="dist" depends="preverify">

<mkdir dir="build/bin"/>

<jar basedir="build/preverified"

jarfile="build/bin/MyProj.jar"

manifest="bin/MANIFEST.MF">

<fileset dir="res"/>

</jar>

<copy file="bin/MyProj.jad"

tofile="build/bin/MyProj.jad"/>

</target>
One inconvenience of using Ant is that you must create the MANIFEST.MF and .jad files yourself. KToolBar performs those chores automatically.
· Application Execution: Once your MIDlet is packaged you're able to run it or deploy it.
<target name="run">

<exec executable="${midp}/bin/emulator">

<arg line="-Xdescriptor:build/bin/MyProj.jad"/>

</exec>

</target>
This example uses Ant's exec task to call the emulator application with the appropriate .jad file. If all goes well, your MIDlet should run in the emulator.
Running Ant

Go to command prompt and type as below:
ant

Using the build.xml file in the current directory, on the default target.
ant -buildfile test.xml

Using the test.xml file in the current directory, on the default target.
ant -buildfile test.xml dist

Using the test.xml file in the current directory, on the target called dist.
ant -buildfile test.xml -Dbuild=build/classes dist

Using the test.xml file in the current directory, on the target called dist, setting the build property to the value build/classes.
ant -lib /home/ant/extras

Picking up additional task and support jars from the /home/ant/extras location
ant -lib one.jar -lib another.jar

Adding two jars to classpath.
Ant can also be integrated with IDEs like Eclipse, NetBeans etc. Soon respective documents will be posted.[image: image2][image: image3][image: image4][image: image5][image: image6][image: image7][image: image8][image: image9][image: image10][image: image11][image: image12][image: image13][image: image14][image: image15][image: image16][image: image17][image: image18][image: image19][image: image20][image: image21][image: image22][image: image23][image: image24][image: image25][image: image26][image: image27][image: image28][image: image29][image: image30][image: image31][image: image32][image: image33][image: image34]

PAGE
6

