Mobile Apps Testing

Version 0.1, Draft

aSl\MSUNG

mobile innovaktor

INFO

Mobile Apps Testing

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law. Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not

warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.

All other company and product names may be trademarks of the respective companies

with which they are associated.

Mobile Apps Testing

This document is intended for MIDP developers to perform effective testing. This

document describes testing basics, activities, classifications, checklists etc.

This document is about mobile applications testing. It assumes good knowledge of Java
programming language, Unit testing concepts and therefore explaining the Java

technology and Java ME is out of the scope in this documentation.

To know more about Java ME basics and Java programming language, refer to the

Knowledge Base under Samsung Mobile Innovator (SMI).

http://innovator.samsungmobile.com/platform.main.do?platformId=3

http://innovator.samsungmobile.com/platform.main.do?platformId=3

Mobile Apps Testing

Table of Contents
INEFOTUCTION ...ttt 5
TESTING OVEIVIBW ...ttt 5
TESHING ACHIVITIES ..c.veevieie et nre e enes 5
Challenges in Testing Mobile APPS......ccooiviiiiieiece e 6
TeStiNng MODIIE APPS.. .o s 6
Validating the Implementation ... 7
USaDIITY TESTING.....eiviitiiiieiieieieee e 7
Network Performance TeStNGcvevveveiiere e 7
SErVEr SIAe TESHING.....ecveiieie et 8
AULOMALING UNIE TESTING ...veivie e 8
Debugging INfOrmMationc.cooiiiiiiiesc e 8
TeStiNG ChECKIISESccvieiiceie e 9
Navigation CheCKIiStc.coiiiiiece e 9
NEtWOrK ChECKIIST ... s 9
Other IMPOrtaNnt ISSUES.......coueiiriiieieiesie e 10

Mobile Apps Testing

Mobile applications like other types of software must be tested to ensure functionality
and usability under all working conditions. Testing is more important for mobile apps
because these are developed in high end environment & actually runs under strict

limitations.

Software testing is an activity to find errors in software system and ensures quality of the

deliverables after error corrections.

Testing is an iterative process and usually starts at the beginning of the project. This
involves multiple phases such as Test planning, test schemes, writing test cases,
execution & reports. Different methodologies are adopted based on size, scope & nature

of the project.

Whole testing activity is broadly split into two classes: Black box testing & White box
testing.

Black Box Testing: This is the functional testing. System as a whole is treated as a
black box, and testers verify that it supports all the features identified (often as use

cases) in the requirements documents. This includes:

e Unit Testing: In this testing activity, components are tested separately.
Because some objects may depend on other objects that are not yet available,
you may need to develop test drivers and test stubs. A test driver simulates the
part of the system that calls the component under test. A test stub simulates a
component called by the tested component.

e Integration Testing: In this activity, objects are integrated in increasingly

large and complex subsystems. This is an incremental testing process.

Mobile Apps Testing

e System Testing: In this activity, the system is tested as a whole. Testers
employ various techniques at this stage, including functional testing (testing
actual behavior against documented requirements), performance testing (testing
nonfunctional requirements), and acceptance and installation testing (testing

against the project agreement).

White Box Testing: This is the structural testing. Focus is to test the code which

produces behavior. This includes:

e Control flow Testing: This requires checking the control flow of the program,
basically steps are checked.

e Data flow Testing: This requires checking the data or the state at different
steps.

e Branch Testing: This requires validating all the code braches & ensuring no
branching leads to abnormal behavior.

e Path Testing: This requires checking of all possible paths in the program to

ensure the code coverage.

There are wide varieties of mobiles available in market running on different
implementation of CLDC & MIDP. Varying display sizes add to the complexity of testing
process. In addition, some vendors provide proprietary APl extensions. As an example,
some Java ME vendors may support only the HTTP protocol, which the MIDP 1.0
specification requires, while others support TCP sockets and UDP datagrams, which are

optional.

The testing activities described above are applicable to testing mobile Java applications.
In other words, you perform unit or class testing, then you integrate components and
test them together, and eventually you test the whole system. Below are the certain

guidelines to test mobile applications.

Mobile Apps Testing

Ensuring that the application does what it's supposed to is an iterative process that you
must go through during the implementation phase of the project. Part of the validation
process can be done in an emulation environment such as the SDK toolkits, which
provides several phone skins and standard input mechanisms. The toolkit's emulation
environment does not support all devices and platform extensions, but it allows you to
make sure that the application looks appealing and offers a user-friendly interface on a
wide range of devices. Once the application has been tested on an emulator, you can

move on to the next step and test it on a real device, and in a live network.

Usability testing (or GUI navigation) focuses is on the external interface, relationships

among the screens of the application & the user friendliness.

You need to test the GUI navigation of the entire system, making notes about usability
along the way. If, for example, the user must traverse several screens to perform a
function that's likely to be very popular, you may wish to consider moving that particular

function up the screen layers.

Points to consider during usability testing:
e Is the navigation depth (the number of screens the user must go through)
appropriate for each particular function?
e Can screens of all supported devices display the content without truncating it?

e Check for Internationalization.

The goal of the next type of testing is to verify that the application performs well in the
hardest of conditions (for example, when the battery is low or the phone is passing
through a tunnel). Testing performance in an emulated wireless network is very
important. The problem with testing in a live wireless network is that so many factors
affect the performance of the network itself that you can't repeat the exact test

scenarios. In an emulated network environment, it is easy to record the result of a test

Mobile Apps Testing

and repeat it later, after you have modified the application, to verify that the

performance of the application has improved.

It is very likely that your applications will communicate with server-side applications. If
your application communicates with servers you control, you have a free hand to test
both ends of the application. If it communicates with servers beyond your control, you
just need to find the prerequisites of use and make the best of them. You can test
server-side applications that communicate over HTTP connections using tools available in

market.

There are many tools available in market to do unit testing in Java. Most popular is the
JUnit framework but this does not hold good for Java ME applications. Extensions of
JUnit are available for Java ME — JMUnit & J2MEUnit. User can generate the test cases &
then execute the test suite. These come with a very good GUI which tells the statistics of

execution.

Adding debugging information in your code is very important. You can display trace
points, values of variables, and other information during testing and debugging. One way
to minimize the tedium of writing System.out.printin() calls is to write a utility method

such as the following:

public void sop(String s) {
System.out.printin("DEBUG: "+s);

You can easily use the sop() method to display debugging information, then later remove

the calls from production code.

Mobile Apps Testing

This section provides checklists you will find useful when testing your application, in both

emulation and live environments.

e Application name: Make sure your application displays a name in the title bar.

o Keep the user informed: If your application doesn't start up within a few
seconds, it should alert the user. For large applications, it is a good idea to have
a progress bar.

e Readable text: Ensure that all kinds of content are readable on both grayscale
and color devices. Also make sure the text doesn't contain any misspelled words.

e Repainting screens: Verify that screens are properly painted and that the
application doesn't cause unnecessary screen repaints.

e Soft buttons: Verify that the functionality of soft buttons is consistent
throughout the application. Verify that the whole layout of screens and buttons is
consistent.

e Screen Navigation: Verify that the most commonly used screens are easily
accessible.

o Portability: Verify that the application will have the same friendly user interface

on all devices it is likely to be deployed on.

e Sending/Receiving data: For network-aware applications, verify that the
application sends and receives data properly.

e Name resolution: Ensure that the application resolves IP addresses correctly,
and sends and receives data properly.

e Sensitive Data: When transmitting sensitive data over the network, verify that
the data is being masked or encrypted. Use the SSL protocol.

e Error handling: Make sure that error messages concerning network error
conditions (such as no network coverage) are displayed properly, and that when
an error message box is dismissed the application regains control.

e Interruptions: Verify that, when the device receives system alerts, SMS

messages, and so on while the application is running, messages are properly

Mobile Apps Testing

displayed. Also make sure that when the message box is dismissed the

application continues to function properly.

Successful startup and exit: Verify that your application starts up properly
and its entry point is consistent. Also make sure that the application exits
properly.

Classes outside the MIDP and CLDC specifications: Unless you are willing
to sacrifice portability and, in some environments, certification, ensure that the
application does not use classes not included in the MIDP and CLDC
specifications.

User manual: Verify that all product documentation is accurate, and consistent

with the software's actual behavior.

10

	Mobile Apps Testing
	Scope
	Validating the implementation
	Usability Testing
	Network Performance Testing
	Server Side Testing
	Automating Unit Testing
	Navigation Checklist
	Network Checklist
	Other Important Issues

