Java ME Obfuscation & Packaging using Eclipse

Java ME Obfuscation & Packaging using Eclipse
Version 0.1, Draft

[image: image1.jpg]aSI\MSUNG

mobile innovakor

Info
COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions, use or disclosure of this material, or any part thereof, is strictly prohibited and is a violation under the Copyright Law. Samsung Electronics reserves the right to make changes in specifications at any time and without notice. The information furnished by Samsung Electronics in this material is believed to be accurate and reliable, but is not warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of Sun Microsystems.
All other company and product names may be trademarks of the respective companies with which they are associated.

About This Document

This document describes about Java ME Obfuscation and Packaging using eclipse IDE, installation of eclipse IDE & integration with Samsung SDK is out of scope of this document.
Scope
This document is intended for Java ME developers who wish to develop Java ME applications.
To know about Java ME basics and Java programming language, refer to the Knowledge Base under Samsung Mobile Innovator (SMI).

http://innovator.samsungmobile.com/platform.main.do?platformId=3
Table of Contents
5Introduction

5Overview

6Create Package

6Create Obfuscation Package

7Packaging using Antenna

7Prerequisites:

8Preferences

8Java ME Preferences

9Obfuscation Preferences

Table of Figures
6Figure 1: Packaging-MIDlet-Suite

8Figure 2: Basic-Preferences

10Figure 3: Packaging-Preferences

Introduction
Previous article Obfuscation in Java ME mainly focus on how Obfuscation process play role in Java ME apps & how it improve run time performance. Obfuscation and Packaging features are inbuilt incorporate with Samsung SDK.
In order to deploy a JavaME MIDlet Suite for use on a JavaME device, it must first be deployed as a JAD and JAR file. EclipseME IDE provides built-in support for packaging MIDlet suite but it does not provides obfuscation packaging into appropriate JAD and JAR files.
Overview
There are two packaging option – create obfuscation packaging & create packaging
as shown in figure 1:

[image: image2.png]Ts Herarchy] = O[3 Helloworldjova &3
TG 7| Gimort savan.microsdivion.m

B

@)l
o Somo
& [open n ew window
@ res| open Type Hierarchy o
M g,y Atsshow >
ey T
8 el [Copy cutec
i Copy Qualified Name
0 pste cutey
* et Delete
Buld Fatn ,
Source Atsshies >
AtesheT >
e
,
,
Compare Vith ,
Restor from Local History.
Configure >
Fropertes Atsenter

e

11c class Helloiiorid exte
public HellcWorid() ¢

7/ T0p0 Ruco-generac
i

protected void destreyip
1/ 7000 Auto-generat

i

protected void pauseire(
7/ 1000 Ruco-generac

B

protected void starthpn(
7/ T0p0 Ruco-generac

Create Obfuscated Package

Enable Preprocessing
Create Fackage

Export Antenna Buld Fles

Figure 1: Packaging-MIDlet-Suite
Create Package
When Create Package JavaME App (MIDlet) >> J2ME >> Create Package, it will deploy the JAD file and JAR file into the deployment directory specified in the Preferences. The deployed JAR file will contain the verified classes and resources.
Create Obfuscation Package

When Create Obfuscated Package JavaME App (MIDlet) >> J2ME >> Create Obfuscation Package, it will deploy the JAD file and JAR file into the deployment directory specified in the Preferences. The deployed JAR file will be obfuscated by the using the Proguard Java Tool as specified in the Preferences.

Obfuscated packages are useful in providing a small level of security for your deployed MIDlets. More importantly, obfuscation generally leads to smaller deployed JAR file sizes.

Proguard is a free open-source library that is available for download from
http://proguard.sourceforge.net/.

Packaging using Antenna

Prerequisites:

· The antenna library available at http://antenna.sourceforge.net/, it correctly configured in the Window >> Preferences >> J2ME >> Antenna JAR, as shown in figure 2.
· A supported Samsung Wireless Toolkit configured in the Platform Components
J2ME >> WTK Root.
If the appropriate prerequisites are not met, an error dialog will be displayed.

Export the Antenna build files from the Java ME project menu. Choose "Export Antenna Build Files". The following files will be generated:

· build.xml - The root build file that may be executed using standard Ant execution. This file is a skeleton that wraps the eclipseme-build.xml file. This file may be modified and will not be overwritten during subsequent export operations.

· eclipseme - build.xml - This build file handles the calls to the Antenna library and contains all of the classpath information generated from the Eclipse projects involved in the export. This file should not be altered, as it will be overwritten during each subsequent export operation. This file should be regenerated whenever the project classpath is updated.

· eclipseme - build.properties - This file contains a set of properties that define the locations and preferences concerning the build. This file should not be altered, as it will be overwritten during each subsequent export operation. The properties in this file may be overridden by creating a user-build.properties in the same directory as the generated files. Properties defined in the user-build.properties will override the values in the eclipseme-build.properties.
Preferences
Java ME Preferences

Select the J2ME category from the left pane of the preferences dialog. The basic preferences page for Eclipse looks like the following:
[image: image3.png]Preferences B

B ==
Devee Maragament
Hen it St Specty e preferences
& fadagng Deploment Dactny: exores
Freventaaion
over e A

Jr—

[
o A 4 €V St 2 oo

e e
“van
‘e
[
@ Plug-in Development e e
oty e s Pt s () [0
& cone M Gt i UL o v g e

& mesiupdte

Figure 2: Basic-Preferences
Deployment Directory:
The Deployment Directory preferences specified the project subdirectory into which deployed JAR and JAD files will be placed during the Create Package operation. In addition, this is the directory in which the built in Over the Air deployment support will search for the JAD and JAR file.
Verified Output Directory Name:
The Java ME specification requires that all classes to be run must be preverified. This allows for high levels of security without the inherent costs of the complete J2SE security implementation. Eclipse automatically does preverification of class files whenever they are saved if automatic builds are enabled for the workbench. Whenever a class is compiled by Eclipse, EclipseME will preverify that class and place the result into this directory.
Antenna JAR:
If you would like to use Eclipse's built-in support for generating Antenna build files, you need to provide Eclipse with the location of the Antenna JAR file here.
WTK Root:
If you would like to use Eclipse's built-in support for generating Antenna build files, you need to provide Eclipse with the location of a Wireless toolkit.
Debug Server Delay:
Some emulators operate as debug servers rather than debug clients. In such emulators, the emulator must be started up before Eclipse may connect to it. Because startup time may vary based on a variety of factors, this preference controls how much time (in milliseconds) Eclipse will wait for the emulator to start before attempting to connect to the emulator's debug server.
Obfuscation Preferences

Obfuscation preferences control the processing of the obfuscated packaging support. Eclipse uses Proguard for doing the obfuscation processing, as shown in figure 3.
[image: image4.png]obfuscation B

& Ganera

o T

tn e o

D | Do
e

®

Figure 3: Packaging-Preferences
Proguard Root Directory:
This value specifies the root directory for the proguard installation. Proguard is required to create obfuscated packaged applications.

Use Specified Arguments:
By default, Eclipse will use the arguments
-dontusemixedcaseclassnames -dontnote -defaultpackage

when invoking Proguard for obfuscation. If circumstances require a different set of parameters to be specified, they may be provided by selecting the check box associated with "Use specified arguments" and specifying the parameters in the text field.

For Microsoft Windows Users: By default, ProGuard assumes that you are using an operating system that can distinguish between two file names that differ only in their case (i.e. A.java and a.java are two different files. This is clearly not the case in Microsoft Windows. Windows users should be sure to specify the -dontusemixedcaseclassnames option to ProGuard. If you fail to do this, and if you have more than 26 classes in your project, ProGuard's default use of case-sensitive file names will cause classes to overwrite one another. For safety, beginning with release 0.9.0 of EclipseME, the -dontusemixedcaseclassnames option is included as one of the default arguments to ProGuard. UNIX users with projects with many classes may be able to achieve a small reduction in the final size of their JAR file by removing this option.

Proguard Keep Expressions:
Proguard keep expressions may be specified to keep a certain set of classes. For further information concerning the syntax of these expressions, please see the Proguard documentation. The default expression will keep all midlet classes and their methods without changes that would confuse the deployment platform.[image: image5][image: image6][image: image7][image: image8][image: image9][image: image10][image: image11][image: image12][image: image13][image: image14][image: image15][image: image16][image: image17][image: image18][image: image19][image: image20][image: image21][image: image22]

PAGE
5

