

JSR 82 ‐ Bluetooth
 Version 0.9, Draft

API GUIDE

API Guide – v 0.9 Page 2 of 27

API Guide

COPYRIGHT

Samsung Electronics Co. Ltd.
This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law. Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.
All other company and product names may be trademarks of the respective companies
with which they are associated.

API Guide – v 0.9 Page 3 of 27

API Guide

About This Document

This document describes the Bluetooth Wireless Technology (JSR‐82). It focuses
on Bluetooth connections and protocols. The document also provides sample
code snippets for client/server pair using RFCOM.

Scope

This document is intended for users who have knowledge of Java programming
language.

Document History:

Date Version Comment

11/06/09 0.9 Draft

References:

• JSR 82 specification: http://jcp.org/en/jsr/detail?id=82

• JSR 82 Article: 1) http://developers.sun.com/mobility/midp/articles/bluetooth2/

 2) http://developers.sun.com/mobility/midp/articles/bluetooth1/

Abbreviations:

JSR Java Specification Request
OBEX Object Exchange Protocol
RFCOMM Radio Frequency Communication
CLDC Connection Limited Device Configuration
L2CAP Logical Link Control and Adaptation Protocol
LAN Local Area Network
API Application Programming Interface
MIDP Mobile Information Device Profile
PPP Point‐to‐Point Protocol

http://jcp.org/en/jsr/detail?id=82
http://developers.sun.com/mobility/midp/articles/bluetooth2/
http://developers.sun.com/mobility/midp/articles/bluetooth1/

API Guide – v 0.9 Page 4 of 27

API Guide

Table of Contents

Introduction... 5

Overview ... 6

Bluetooth Profiles ... 6

Bluetooth API Architecture .. 7

API Description... 8

Bluetooth Communication.. 10

JSR 82 ‐ Bluetooth Example... 21

Class: BluetoothDemo ... 21

Class: Server.. 23

Class: Client... 25

List of Tables

Figure 1: High‐level Architecture of J2ME CDLC/MIDP and Bluetooth.............................. 8

API Guide – v 0.9 Page 5 of 27

API Guide

Introduction

Bluetooth is one of the wireless communication protocols. It is mainly used for short
distance and in devices with low power consumption. With the help of Bluetooth, you
can communicate in an omni‐directional manner of up to 30 feet at 1 Mb/s. JSR 82 is
based on version 1.1 of the Bluetooth Specification.

Bluetooth is the first open, non‐proprietary standard for developing Bluetooth
applications using Java programming language. It hides the complexity of the Bluetooth
protocol stack behind a set of Java APIs, that emphasis on application development
rather than the low‐level details of Bluetooth.

This specification includes basic support for at least, the following Bluetooth protocols:

• RFCOMM

• OBEX

• Service Discovery protocols

• L2CAP (Logical Link Control and Adaptation Protocol)

Additional protocol support may be added in future versions. The specification is
primarily targeted at native Bluetooth protocols.

The Java ME APIs for Bluetooth are targeted at devices characterized as follows:

• 512 K minimum total memory available (ROM/Flash and RAM). Application

memory requirements are additional.

• Bluetooth network connection.

• Compliant implementation of the Java ME Connected Limited Device

Configuration (CLDC).

API Guide – v 0.9 Page 6 of 27

API Guide

Overview

Bluetooth devices cannot interact unless they conform to a particular profile. Bluetooth
profiles are intended to ensure interoperability among Bluetooth‐enabled devices and
applications from different manufacturers and vendors. A profile defines the roles and
capabilities for specific types of applications.

Bluetooth Profiles

Types of Bluetooth profiles are:

• Generic Access Profile

• Service Discovery Application and Profile

• Serial Port Profile

• LAN Access Profile

• Synchronization Profile

• Basic Imaging Profile

• Basic Printing Profile

• File Transfer Profile

Generic Access Profile: This profile defines connection procedures, device discovery,
and link management. It also defines procedures related to use the different security
models and common format requirements for parameters accessible on the user interface
level. At a minimum, all bluetooth devices must support this profile.

Service Discovery Application and Profile: This profile defines the features and
procedures for an application in a Bluetooth device to discover services registered in
other Bluetooth devices, and retrieves information related to the services.

Serial Port Profile: This profile defines the requirements for Bluetooth devices that need
to set up connections, which emulate serial cables and use the RFCOMM protocol.

LAN Access Profile: This profile defines how Bluetooth devices can access the services
of a LAN using PPP (Point‐to‐Point Protocol), and shows how PPP mechanisms can be
used to form a network consisting of Bluetooth devices.

Synchronization Profile: This profile defines the application requirements for Bluetooth
devices that need to synchronize data on two or more devices.

API Guide – v 0.9 Page 7 of 27

API Guide

Basic Imaging Profile: This profile is designed for sending images between devices and
includes the ability to resize, and convert images to make them suitable for the receiving
device.

Basic Printing Profile: This allows devices to send text, e‐mails, vCards, or other items
to printers based on print jobs. This makes it more suitable for embedded devices such
as mobile phones and digital cameras, which cannot easily be updated with drivers
dependent upon printer vendors.
File Transfer Profile: Provides the capability to browse, manipulate and transfer objects
(files and folders) in an object store (file system) of another system.

Bluetooth API Architecture

Purpose of the specification was to define an open, non‐proprietary standard API that
can be used by all Java ME enabled devices. So Standard Java ME APIs and
CLDC/MIDPʹs Generic Connection Framework were used for designing.

Some important features:

Bluetooth protocols and profiles were supported by these specifications. It does not
include specific APIs for all Bluetooth profiles simply because the number of profiles is
growing.

Specification includes the RFCOMM, OBEX, and Service Discovery protocols, L2CAP
communication protocols in the JSR 82 APIs, primarily because all current Bluetooth
profiles are designed to use these communication protocols.

The Service Discovery protocol is also supported. JSR 82 defines service registration in
detail in order to standardize the registration process for the application programmer.

JSR 82 requires the Bluetooth stack underlying a JSR 82 implementation to be qualified
for the Generic Access Profile, the Service Discovery Application Profile, and the Serial
Port Profile. The stack must also provide access to its Service Discovery Protocol, and to
the RFCOMM and L2CAP layers.

This API is user friendly. So developers can use the Java programming language to build
new Bluetooth profiles on top of this API as long as the core layer specification does not
change.

Specification is not restricted to promote this flexibility and extensibility to APIs that
implement Bluetooth profiles. This JSR also includes APIs for OBEX and L2CAP. This
will help for future Bluetooth profiles, which can be implemented in Java. Figure 1
shows where the APIs defined in this specification fit in CLDC/MIDP architecture.

API Guide – v 0.9 Page 8 of 27

API Guide

Figure 1: High‐level Architecture of J2ME CDLC/MIDP and Bluetooth

API Description:

Java APIs for Bluetooth define two packages that depend on the CLDC
javax.microedition.io.*; package:

• javax.bluetooth: core Bluetooth API

• javax.obex: APIs for the Object Exchange (OBEX) protocol

OBEX APIs are defined independently of the Bluetooth transport layer and packaged
separately. Each of the above packages represents a separate optional package, which
means that a CLDC implementation can include either package or both. MIDP enabled
devices are expected to be the kind of devices to incorporate this specification. This
document focuses on core Bluetooth API (javax.bluetooth).

API Guide – v 0.9 Page 9 of 27

API Guide

The javax.bluetooth API is intended to provide the following capabilities:

• Register services

• Discover devices and services

• Establish RFCOMM, L2CAP connections between devices

• Using those connections, send and receive data.

• Manage and control the communication connections.

• Provide security for these activities.

Bluetooth protocols

Bluetooth API javax.bluetooth defines the following protocol for communication:

• L2CAP

• RFCOMM

Logical Link Control and Adaptation Protocol (L2CAP)

JSR‐82 defines the L2CAPConnectionNotifier and L2CAPConnection interfaces for sending
and receiving packets over L2CAP channels. These are derived from the CLDC Generic
Connection Framework interface Connection.

An L2CAP server is created by calling Connector.open() with an appropriate server
connection string.
The format of the string is defined by JSR‐82. The connector string begins with the
protocol prefix “btl2cap://” and may contain parameters related to a master/slave
preference, or security parameters (authentication, encryption, and authorization). It
may also contain parameters related to the application’s preference for a desired
Maximum Transmit Unit (MTU) size in the send and/or receive directions.

An L2CAPConnectionNotifier object is returned when opening a server connection. The
method acceptAndOpen() can be used to accept connections from remote clients. L2CAP
packets are sent or received using the send and receive methods of class
L2CAPConnection. An application using L2CAP connections must provide its own flow
control if needed. L2CAP clients are created in a similar way with method
Connector.open() using a client connection string.

API Guide – v 0.9 Page 10 of 27

API Guide

Radio Frequency Communication (RFCOMM)

RFCOMM connections provide reliable, bidirectional, stream‐oriented communication.
In JSR‐82, the API is based on the StreamConnectionNotifier and StreamConnection
interfaces of the Generic Connection Framework defined for Connected Limited Device
Configuration (CLDC).

An RFCOMM server is created by calling Connector.open() with an appropriate server
connection string.

The format of the string is defined by JSR‐82. The connector string begins with the
protocol prefix “btspp://” and may contain parameters related to a master/slave
preference, or security parameters (authentication, encryption, and authorization).

A StreamConnectionNotifier object is returned when opening a server connection and
its acceptAndOpen() method can be used to accept connections from remote clients.
Input and output streams are used to read or write data on a connection. RFCOMM
clients are created in a similar way with method Connector.open() using a client
connection string.

Bluetooth Communication:

Bluetooth application has to carry out the following parts for communication:
stack initialization, setting discovery mode, device discovery, service discovery, and
connection.

• Stack initialization

In Bluetooth device, the Bluetooth stack is used for controlling the device. So this should
be initialized first before starting. After the initialization, device will be ready for use.

In JSR 82, specification consists of LocalDevice class. This is also called as basic entry
point. LocalDevice class helps in initializing the JSR 82 stack. This is also used to control
the local Bluetooth settings. LocalDevice class provides the lowest level of access to the
Bluetooth stack. LocalDevice class provides with the ability to query information about
your own Bluetooth device.

To initialize Bluetooth stack, get the LocalDevice reference by calling static method
LocalDevice.getLocalDevice ()

localDevice = LocalDevice.getLocalDevice();

API Guide – v 0.9 Page 11 of 27

API Guide

• Discovery Mode

Now set the deviceʹs discoverable mode by calling LocalDevice.setDiscoverable(int mode).
JSR 82 supports three access modes:

• DiscoveryAgent.GIAC

• DiscoveryAgent.LIAC

• DiscoveryAgent.NOT_DISCOVERABLE

A Bluetooth device can have various settings for its ʺdiscoverable mode.ʺ For example, a
device may be configured, not to be discoverable. In this case, other Bluetooth devices
that are within range cannot detect it. Alternatively, a Bluetooth device may be
configured, to be generally discoverable by other Bluetooth devices. In this case, the
discoverable mode will be set using the General Unlimited Inquiry Access Code (GIAC).
A Bluetooth device may also be configured to be discoverable in a ʺlimitedʺ manner by
other Bluetooth devices by using a limited inquiry. In this case, the discoverable mode is
set using the Limited Dedicated Inquiry Access Code (LIAC).

Normally, an inquiry is done with the GIAC. To take out the device from the
discoverable mode, set mode to NOT_DISCOVERABLE.

It will return true or false after setting the discoverable mode, if it returns false, that
mean the Bluetooth device does not support the access mode.

/* Retrieve the local device to get to the Bluetooth Manager*/
 localDevice = LocalDevice.getLocalDevice();
 /* Set the discoverable mode to GIAC*/
 localDevice.setDiscoverable(DiscoveryAgent.GIAC);

• Device discovery

The core Bluetooth APIʹs DiscoveryAgent class and DiscoveryListener interface provide
the necessary discovery services.
After getting a LocalDevice object, instantiate a DiscoveryAgent by calling
LocalDevice.getDiscoveryAgent().

/* Retrieve the local device to get to the Bluetooth Manager*/
 localDevice = LocalDevice.getLocalDevice();
 /* set the discoverable mode to GIAC*/
 localDevice.setDiscoverable(DiscoveryAgent.GIAC);
 /*retrieve the discovery agent*/
 discoveryAgent = localDevice.getDiscoveryAgent();

API Guide – v 0.9 Page 12 of 27

API Guide

There are two ways to obtain a list of accessible devices (RemoteDevice) using
DiscoveryAgent.

1) The DiscoveryAgent.startInquiry(int accessCode,DiscoveryListener listener) method
places the device into an inquiry mode. Application must specify a
DiscoveryListener that will respond to inquiry‐related events to take advantage
of this mode. DiscoveryListener.deviceDiscovered() is called each time an inquiry
finds a device. DiscoveryListener.inquiryCompleted() is invoked when the inquiry
is completed or canceled.

public class BTDiscovery implements DiscoveryListener{
...
/* retrieve the discovery agent */
DiscoveryAgent agent = local.getDiscoveryAgent();

/* place the device in inquiry mode*/
boolean complete =
agent.startInquiry(DiscoveryAgent.GIAC, this);
...
public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod) {

form.append(”Device discovered: “+btDevice.getBluetoothAddress());
}

public void inquiryCompleted(int discType)

switch (discType) {

case DiscoveryListener.INQUIRY_COMPLETED :

form.append(”INQUIRY_COMPLETED”);
break;

case DiscoveryListener.INQUIRY_TERMINATED :

form.append(”INQUIRY_TERMINATED”);

break;

case DiscoveryListener.INQUIRY_ERROR :

form.append (”INQUIRY_ERROR”);

break;

default :

API Guide – v 0.9 Page 13 of 27

API Guide

form.append (”Unknown Response Code”);

break;

}

}

}

2) DiscoveryAgent.retrieveDevices(int retrieveOption) method is used to retrieve an existing
list if the device does not wait for other devices to be discovered. Depending on the
parameter passed, this method will return either a list of devices that were found in a
previous inquiry (CACHED), or a list of pre‐known.

/* Retrieve PREKNOWN devices*/
RemoteDevice[] devices = agent.retrieveDevices(
DiscoveryAgent.PREKNOWN);

/*Retrieve CACHED devices */
RemoteDevice[] devices = agent.retrieveDevices(
DiscoveryAgent.CACHED);

RemoteDevice class represents a remote device (i.e., a device within a range of reach) and
provides methods to retrieve information like Bluetooth address and name about the
device.

• Service discovery:

Once the local device has discovered at least one remote device, it can begin to search for
available services ‐ Bluetooth applications can use to accomplish useful tasks. Because
service discovery is much like device discovery, DiscoveryAgent also provides methods
to discover services on a Bluetooth server device, and to initiate service‐discovery
transactions. Note that the API provides mechanisms to search for services on remote
devices, but not for services on the local device.

The servicesDiscovered() and serviceSearchCompleted() methods of DiscoveryAgent
must be implemented. They will handle the events occurring when services are found
or when the service discovery completes.

public class BTDiscovery implements DiscoveryListener{
...
/* retrieve the discovery agent */
DiscoveryAgent agent = local.getDiscoveryAgent();

API Guide – v 0.9 Page 14 of 27

API Guide

/* place the device in inquiry mode*/
boolean complete =
agent.startInquiry(DiscoveryAgent.GIAC, this);
...

public void deviceDiscovered(RemoteDevice remoteDevice, DeviceClass cod) {

int[] attributes = {0x100,0x102,0x102};
/*
* Supplying UUIDs in an UUID array enables searching for
* specific services.
*/
UUID[] uuids = new UUID[1];
uuids[0] = new UUID(0x1002);
try {
agent.searchServices(attributes,uuids, remoteDevice,this);
} catch (BluetoothStateException e) {
/* Error handling code here*/
}
}

public void inquiryCompleted(int discType)
{
}
public void servicesDiscovered(int transID,
ServiceRecord [] serviceRecord) {
/* Services discovered, keep reference to the ServiceRecord
* array
*/
servicesFound = serviceRecord;
}
public void serviceSearchCompleted(int transID, int respCode) {
switch(respCode) {
case DiscoveryListener.SERVICE_SEARCH_COMPLETED:
/*
* Service search completed successfully
* Add appropriate code here
*/
break;
case
DiscoveryListener.SERVICE_SEARCH_DEVICE_NOT_REACHABLE:
/* device not reachable, add appropriate code here*/
break;
case DiscoveryListener.SERVICE_SEARCH_ERROR:
/* Service search error, add appropriate code here*/
break;
case DiscoveryListener.SERVICE_SEARCH_NO_RECORDS:

API Guide – v 0.9 Page 15 of 27

API Guide

/* No records found, add appropriate code here*/
break;
case DiscoveryListener.SERVICE_SEARCH_TERMINATED:
/*
* Search terminated by agent.cancelServiceSearch()
* Add appropriate code here
*/
break;

}

Service should first be registered or advertised on a Bluetooth server device, before it is
discovered. Server performs many things like creating a service record that describes the
service offered, accepting connections from clients, and adding a service record to the
serverʹs Service Discovery Database (SDDB).

• Connection

As mentioned in the Bluetooth protocol section, Bluetooth connections are based on the
Logical Link Control and Adaptation Layer Protocol (L2CAP), a low‐level data‐packet
protocol, and a serial emulation protocol over L2CAP that is supported by the Serial
Port Profile (SPP) RFCOMM. Bluetooth connections are based on the Generic
Connection Framework (GCF) factory method javax.microedition.io.Connector.open() and
are represented by the L2CAPConnection and StreamConnection types respectively.

The connection URL scheme determines the connection type to create:

The URL format for an L2CAPConnection:

btl2cap://hostname:[PSM | UUID];parameters

The URL format for an RFCOMM StreamConnection:

btspp://hostname:[CN | UUID];parameters

hostname is either localhost to set up a server connection, or the Bluetooth address to
create a client connection.

PSM is the Protocol/Service Multiplexer value, used by a client connecting to a server.

CN is the Channel Number value, used by a client connecting to a server.

UUID is the Universally Unique Identifier used when setting up a service on a server.
Each UUID is guaranteed to be unique across all time and space.

Parameters include name to describe the service name, and the security parameters
authenticate, authorize, and encrypt.

API Guide – v 0.9 Page 16 of 27

API Guide

Example : Server RFCOMM URL:

btspp://localhost:2D26618601FB47C28D9F10B8EC891363;authenticate=false;
 encrypt=false;name= rfcommtest

A client RFCOMM URL:

btspp://0123456789AF:1;master=false;encrypt=false;authenticate=false

Using localhost as a hostname indicates you want a server connection. To create a client
connection to a known device and service, use the serviceʹs connection URL, found in its
ServiceRecord.

The following code snippet shows how to create an RFCOMM server connection:

...
/* Bluetooth Service name*/
private static final String myServiceName = ʺ rfcommtest ʺ;

/* Bluetooth Service UUID of interest*/
private static final String myServiceUUID = ʺ2d26618601fb47c28d9f10b8ec891363ʺ;
private UUID MYSERVICEUUID_UUID = new UUID(myServiceUUID, false);
...
/* Define the server connection URL*/
String connURL =
ʺbtspp://localhost:ʺ+MYSERVICEUUID_UUID.toString()+ʺ;ʺ+name=ʺ+myServiceName;
...
/* Create a server connection (a notifier)*/
StreamConnectionNotifier scn = (StreamConnectionNotifier) Connector.open(connURL);
...
/*Accept a new client connection*/
StreamConnection sc = scn.acceptAndOpen();
...

The following code snippet shows how to create a client connection for a given service
of interest, using its service record:

...
/* Given a service of interest, get its service record*/
ServiceRecord sr = (ServiceRecord)discoveredServices.elementAt(i);
/* Then get the serviceʹs connection URL*/
String connURL = sr.getConnectionURL(ServiceRecord.NOAUTHENTICATE_NOENCRYPT,
false);
/* Open connection*/
StreamConnection sc = (StreamConnection) Connector.open(connURL);
...

API Guide – v 0.9 Page 17 of 27

API Guide

• Service Registration

Before a service can be discovered, it must first be registered ‐ advertised on a
Bluetooth server device. The server is responsible for:

1. Creating a service record that describes the service offered.

The Bluetooth implementation automatically creates a service record when your
application creates a connection notifier, either a StreamConnectionNotifier or an
L2CAPConnectionNotifier.

The following code snippet defines and instantiates an RFCOMM connection
notifier, resulting in the creation of the service record:

...
StreamConnectionNotifier streamConnectionNotifier;
/* Create notifier (and service record)*/
streamConnectionNotifier = (StreamConnectionNotifier)
 Connector.open(connectionURL);
...

2. Registering the services and Adding the service record to the serverʹs Service

Discovery Database (SDDB), so it is visible and available to potential clients
and wait for client.

Once you have created the connection notifier and the service record, the server is
ready to register the service and wait for clients. Invoking the notifier
acceptAndOpen() method, causes the Bluetooth implementation to insert the service
record for the associated connection into the SDDB, making the service visible to
clients.

...
/* Insert service record into SDDB and wait for an incoming client*/
StreamConnection conn = streamConnectionNotifier.acceptAndOpen();
...

3. Updating the service record in the SDDB whenever the serviceʹs attributes
change.

You can retrieve the record from the SDDB by calling LocalDevice.getRecord(), add or
change attributes of interest by calling ServiceRecord.setAttributeValue(), and write the
service record back to the SDDB with a call to LocalDevice.updateRecord():

API Guide – v 0.9 Page 18 of 27

API Guide

...
try {
 /* Retrieve service record and set/update optional attributes,
 for example, ServiceAvailability, indicating service is available*/
 sr = localDevice.getRecord(streamConnectionNotifier);
 sr.setAttributeValue(SDP_SERVICEAVAILABILITY,
 new DataElement(DataElement.U_INT_1, 0xFF));
 localDevice.updateRecord(sr);
} catch (IOException ioe) {
 /* Catch exception, display error*/
}
...

4. Removing or disabling the service record in the SDDB when the service is no

longer available

When the service is no longer needed, remove it from the SDDB by closing the
connection notifier:

...
streamConnectionNotifier.close();
...

The following steps demonstrate the server using RFCOMM:

1. Take the example of LocalDevice reference, which represents the basic functions of
Bluetooth manager. It provides the lowest level of interface possible into the
Bluetooth stack. It is a singleton object.

localDevice = LocalDevice.getLocalDevice();

2. To put device in discoverable mode call setDiscoverable(int inputMode) method with
input mode.

localDevice.setDiscoverable(DiscoveryAgent.GIAC);

DiscoveryAgent.GIAC = the inquiry access code for General/Unlimited Inquiry Access
 Code (GIAC). This is used to specify the type of inquiry to complete or respond.

3. Invoke Connector.open with a server connection URL argument to create a new
service record that represents the service, and cast the result to a
StreamConnectionNotifier that represents the service:

StreamConnectionNotifier
 notifier= (StreamConnectionNotifier)Connector.open(SERVERURL);

API Guide – v 0.9 Page 19 of 27

API Guide

It pauses thread until Transmission occurs:

 conn = notifier.acceptAndOpen();

The following steps snippet demonstrates the Client using RFCOMM:

1. The Client has the different process to initiate the Bluetooth stack as compare to
server. Take the LocalDevice reference and get DiscoveryAgent object for placing the
device in inquiry mode.

 LocalDevice localDevice = LocalDevice.getLocalDevice();

 discoveryAgent = localDevice.getDiscoveryAgent();

 discoveryAgent.startInquiry(DiscoveryAgent.GIAC, this);

2. The Client must implement the DiscoveryListener. This allows an application to
receive device discovery and service discovery events. This interface provides four
methods, two for discovering devices and two for discovering services.

• deviceDiscovered(RemoteDevice btDevice, DeviceClass cod)

 Called when a device is found during an inquiry.

• inquiryCompleted(int discType)

 Called when an inquiry is completed.

• servicesDiscovered(int transID, ServiceRecord[] servRecord)

 Called when service(s) are found during a service search.

• serviceSearchCompleted(int transID, int respCode)

 Called when a service search is completed or was terminated because of an error.

3. To take the service URL:

public void servicesDiscovered(int transID, ServiceRecord[] servRecord) {
 /* in this example there is only one service*/
 for(int i=0;i<servRecord.length;i++) {
 serviceUrl = servRecord[i].getConnectionURL(0,false);
 }
 }

API Guide – v 0.9 Page 20 of 27

API Guide

4. To take the server response:

public void serviceSearchCompleted(int transID, int responseCode) {

……
 conn = (StreamConnection)Connector.open(serviceUrl);
…..
 OutputStream output = conn.openOutputStream();
…..
 InputStream inputStream = conn.openInputStream();
….

}

5. Once the communication is over then close all connection:

Conn.close();
Output.close();
inputStream.close();

• Communication:

Two devices must share a common communication protocol to use a service on a remote
device in a local device. This sharing allows applications to access a wide variety of
Bluetooth services; the Java APIs for Bluetooth provide mechanisms that allow
connections to any service that uses RFCOMM, L2CAP, or OBEX as its protocol.

If the service uses another protocol (such as TCP/IP) layered above one of these
protocols, the application can access the service, but only if it implements the additional
protocol in the application, using the CLDC Generic Connection Framework.

URL used as a service record consists of digits and symbols. It looks something like:
btspp://AAAAAAAAA11111111111111:8. This means that a client should use a
Bluetooth Serial Port Profile (btspp://) to establish a connection with server channel 8 on
a device with address AAAAAAAAA11111111111111. Device addresses are similar to
physical addresses of computers.

API Guide – v 0.9 Page 21 of 27

API Guide

JSR 82 ‐ Bluetooth Example:

This sample example shows how to use Bluetooth API.

Class: Bluetooth Demo

import javax.microedition.midlet.MIDlet;
import javax.microedition.midlet.MIDletStateChangeException;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.List;
import javax.microedition.lcdui.Choice;
import javax.bluetooth.UUID;

public final class BluetoothDemo extends MIDlet implements CommandListener {

 /* Shared UUID by server and client */
 public static final UUID RFCOMM_UUID = new UUID(0x0003);
 /*Soft key names*/
 private static final String SELECT = ʺSelectʺ;
 private static final String EXIT = ʺExitʺ;

 /* Soft‐keys*/
 private final Command CMD_EXIT = new Command(EXIT, Command.EXIT, 1);
 private final Command CMD_SLECT = new Command(SELECT, Command.SCREEN, 2);

 /* String array show on list */
 private static final String[] MENULABLES = {ʺServerʺ, ʺClientʺ };
 /*List*/
 private final List menu = new List(ʺBluetooth Echo Demoʺ, Choice.IMPLICIT, MENULABLES,
null);
 /*Display*/
 private Display display = null;

 public BluetoothDemo() {

 menu.addCommand(CMD_EXIT);
 menu.addCommand(CMD_SLECT);
 menu.setCommandListener(this);

 }

 public void startApp() {

API Guide – v 0.9 Page 22 of 27

API Guide

 display = Display.getDisplay(this);
 display.setCurrent(menu);

 }

 protected void destroyApp(boolean unconditional) {
 }

 protected void pauseApp() {
 }

 public void commandAction(Command cmd, Displayable d) {
 if (cmd == CMD_EXIT) {

 destroyApp(true);
 notifyDestroyed();
 return;
 }

 else if (cmd == CMD_SLECT) {

 switch (menu.getSelectedIndex()) {

 case 0:
 /*Create the Server Object*/
 new Server(display);
 break;
 case 1:
 /*Create the Client Object*/
 new Client(display);
 break;
 }

 }
 }
}

API Guide – v 0.9 Page 23 of 27

API Guide

Class: Server

import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.TextBox;
import javax.microedition.lcdui.TextField;
import javax.bluetooth.LocalDevice;
import javax.bluetooth.DiscoveryAgent;
import javax.bluetooth.BluetoothStateException;
import javax.microedition.io.Connector;
import javax.microedition.io.StreamConnection;
import javax.microedition.io.StreamConnectionNotifier;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.IOException;

public class Server implements Runnable{

 private StreamConnectionNotifier notifier;
 private StreamConnection conn;
 private LocalDevice localDevice;
 private boolean isInit;
 private static final String SERVERURL = ʺbtspp://localhost:ʺ
 + BluetoothDemo.RFCOMM_UUID +
 ʺ;name=rfcommtest;authorize=falseʺ;
 private Display display = null;
 private final Form form = new Form(ʺServer...ʺ);//,
 //ʺSearching for Client...ʺ, 50, TextField.ANY);
 private static final String SERVERMSG = ʺ\nHello Form Server...ʺ;

 public Server(Display dis) {
 display = dis;
 display.setCurrent(form);
 isInit = false;
 Thread thread = new Thread(this);
 thread.start();
 }

 public void run() {
 if (!isInit) {
 /* Initialization is done in the thread to avoid dead lock ʹisInitʹ*/
 /*ensures it is done once only*/
 try {
 conn = null;
 form.append(ʺSearching for Client...ʺ);
 localDevice = LocalDevice.getLocalDevice();
 localDevice.setDiscoverable(DiscoveryAgent.GIAC);

API Guide – v 0.9 Page 24 of 27

API Guide

 notifier = (StreamConnectionNotifier)
 Connector.open(SERVERURL);
 } catch (BluetoothStateException e) {
 form.append(ʺBluetoothStateException: ʺ +e.getMessage());
 } catch (IOException e) {
 form.append(ʺIOException: ʺ + e.getMessage());
 }
 isInit = true;
 }
 try {
 /* Pauses thread until Transmission occurs*/
 conn = notifier.acceptAndOpen();
 OutputStream output = conn.openOutputStream();
 output.write(SERVERMSG.length()); // length is 1 byte
 output.write(SERVERMSG.getBytes());
 output.close();
 InputStream inputStream = conn.openInputStream();
 int length = inputStream.read();
 byte[] data = null;
 data = new byte[length];
 length = 0;
 /* Assemble data*/
 while (length != data.length) {
 int ch = inputStream.read(data, length, data.length ‐ length);
 if (ch == ‐1) {
 throw new IOException(ʺCanʹt read dataʺ);
 }
 length += ch;
 }
 String msg = new String(data);
 form.append(msg);
 inputStream.close();
 conn.close();
 notifier.close();

 } catch (Exception ex) {
 form.append(ʺBluetooth Server Running Error: ʺ + ex);
 }
 }
}

API Guide – v 0.9 Page 25 of 27

API Guide

Class: Client

import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.TextBox;
import javax.microedition.lcdui.TextField;
import javax.microedition.lcdui.Alert;
import javax.microedition.lcdui.AlertType;
import javax.bluetooth.DiscoveryListener;
import javax.bluetooth.DeviceClass;
import javax.bluetooth.DiscoveryAgent;
import javax.bluetooth.RemoteDevice;
import javax.bluetooth.UUID;
import javax.bluetooth.LocalDevice;
import javax.bluetooth.ServiceRecord;
import javax.microedition.io.StreamConnection;
import javax.microedition.io.Connector;
import java.io.OutputStream;
import java.io.InputStream;
import java.io.IOException;

public class Client implements DiscoveryListener {
 private DiscoveryAgent discoveryAgent;
 private UUID[] uuidSet;
 private String serviceUrl;
 private Display display = null;
 private StreamConnection conn = null;
 private final Form form = new Form(ʺClient...ʺ);
 private static final String CLIENTMSG = ʺ\nHello From Client..ʺ;

 public Client(Display dis) {
 display = dis;
 display.setCurrent(form);
 try {
 LocalDevice localDevice = LocalDevice.getLocalDevice();
 discoveryAgent = localDevice.getDiscoveryAgent();

 discoveryAgent.startInquiry(DiscoveryAgent.GIAC, this);
 form.append(ʺ\nstart Inquiry...ʺ);
 form.append(ʺ\nSearching for device...ʺ);

 } catch (Exception e) {
 form.append(“exception ”+e);
 }

 }

 public void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod) {
 try {
 /* Get Device Info*/
 form.append(ʺ\nDevice Discoveredʺ);

API Guide – v 0.9 Page 26 of 27

API Guide

 form.append(ʺ\nMajor Device Class: ʺ + cod.getMajorDeviceClass() + ʺ Minor Device Class: ʺ
 + cod.getMinorDeviceClass());
 form.append(ʺ\nBluetooth Address: ʺ + btDevice.getBluetoothAddress());
 form.append(ʺ\nBluetooth Friendly Name: ʺ + btDevice.getFriendlyName(true));
 /* Search for Services*/
 uuidSet = new UUID[1];
 uuidSet[0] = BluetoothDemo.RFCOMM_UUID;
 int searchID = discoveryAgent.searchServices(null,uuidSet,btDevice,this);
 } catch (Exception e) {
 form.append(ʺ\nDevice Discovered Error: ʺ + e);
 }
 }

 public void inquiryCompleted(int discType) {
 form.append(ʺ\nInquiryCompletedʺ);
 }

 public void servicesDiscovered(int transID, ServiceRecord[] servRecord) {
 /*handling only one service*/
 form.append(ʺ\nServicesDiscoveredʺ);
 for(int i=0;i<servRecord.length;i++) {
 serviceUrl = servRecord[i].getConnectionURL(0,false);
 }
 }

 public void serviceSearchCompleted(int transID, int responseCode) {
 if(responseCode == SERVICE_SEARCH_ERROR)
 form.append(ʺ\nSERVICE_SEARCH_ERROR\nʺ);

 if(responseCode == SERVICE_SEARCH_COMPLETED) {
 form.append(ʺ\nSERVICE_SEARCH_COMPLETED\nʺ);
 form.append(ʺ\nService URL: ʺ + serviceUrl);
 try {
 Alert alert = new Alert(ʺInfo...ʺ,ʺServer Responding...ʺ,null,AlertType.INFO);
 alert.setTimeout(1200);
 conn = (StreamConnection)Connector.open(serviceUrl);
 OutputStream output = conn.openOutputStream();
 InputStream inputStream = conn.openInputStream();
 int length = inputStream.read();
 byte[] data = null;
 data= new byte[length];
 length = 0;
 // Assemble data
 while (length != data.length)
 {
 int ch = inputStream.read(data, length, data.length ‐ length);
 if (ch == ‐1)

API Guide – v 0.9 Page 27 of 27

API Guide

 {
 throw new IOException(ʺCanʹt read dataʺ);
 }
 length += ch;
 }
 String msg = new String(data);

 form.append(msg);
 display.setCurrent(form);
 output.write(CLIENTMSG.length());
 output.write(CLIENTMSG.getBytes());
 output.close();
 } catch (Exception ex) {
 form.append (“exception ”+ex);
 } finally {
 try {
 conn.close();
 } catch (IOException ioe) {
 form.append(ʺError Closing connection ʺ + ioe);
 }
 }
 }
 if(responseCode == SERVICE_SEARCH_TERMINATED)
 form.append(ʺ\nSERVICE_SEARCH_TERMINATED\nʺ);

 if(responseCode == SERVICE_SEARCH_NO_RECORDS)
 form.append(ʺ\nSERVICE_SEARCH_NO_RECORDS\nʺ);

 if(responseCode == SERVICE_SEARCH_DEVICE_NOT_REACHABLE)
 form.append(ʺ\nSERVICE_SEARCH_DEVICE_NOT_REACHABLE\nʺ);
 }
}

	JSR 82 - Bluetooth

