[image: image1.jpg]aSI\MSUNG

mobile innovakor

 Information Guide

Event Handling in
Java ME
 Version 0.9, Draft

[image: image3.jpg]¢Q SNAMSUNG

INFORMATION GUIDE
COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions, use or disclosure of this material, or any part thereof, is strictly prohibited and is a violation under the Copyright Law Samsung Electronics reserves the right to make changes in specifications at any time and without notice. The information furnished by Samsung Electronics in this material is believed to be accurate and reliable, but is not warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of Sun Microsystems.

All other company and product names may be trademarks of the respective companies with which they are associated.

About This Document

This document describes the event handling in Java ME and provides sample code snippet demonstrating handling of high level and low level events.
Scope:

This document is intended for novice Java ME user. Focusing on Java and Java ME is out of scope of this document.

Document History:
	Date
	Version
	Comment

	11/10/09
	0.9
	Draft

Abbreviations:
	J2ME
	Java 2 Micro Edition.

	MIDP
	Mobile Information Device Profile

	CLDC
	Connected Limited Device Configuration

	API
	Application Programming Interface

Table of Contents

5Introduction

5Overview

5CallBack

6High-Level Event Handling

7Command:

8CommandListener Interface

9ItemStateListener Interface

10ItemCommandListener

11Low-Level Event Handling

11Handling Commands:

12Handling Key Events and Game Action:

14Event Handling Methods

14Key Handling Across Devices

Table of Figures

6Figure 1: Event Handling in MIDlet

Introduction

When a user interacts with a MIDlet loaded on a mobile device, some events are generated. For example, if the user selects Exit on device, the application is notified of this action and responds to the generated event, and the application exit. But how does the application get notified of an event, and how does it handle it, this is the focus of this document.

MIDP user interface APIs provide two kinds of events.

· High - Level

· Low - Level

Overview

In Java ME, events represent all activities between the user and the MIDlet. MIDlet communicates these actions to the programs using events. When the user interacts with a program by pressing a command button, the system creates an event representing the action and hands it to the event-handling code within the program. This code determines how to handle the event so that the user gets the appropriate response.

CallBack

When a user interacts with a MIDlet, events are generated and the application is modified to handle and respond to these events. The application is notified of such events through callbacks. Callbacks are invocation of programmer-defined methods that are executed by the application in response to actions taken by a user at run time.
In more detail its normal parameter passing mechanism lets caller provide the callee with information, but provides only meager flow of information in the reverse direction, the single returned result primitive or Object. Further the callee cannot provide further information back to the caller once it has returned. The callback mechanism allows a two-way flow of information and exchange of computing resources between caller and callee.
Consider Form containing command and caller wants to control on command. The callee wants to notify the caller whenever one of the command was pressed, and which one. The callback mechanism, in Java called as Listener mechanism, allows the callee to notify the caller, the listener, of interesting events, or to use some of the methods the caller has access to.
[image: image2.jpg]

Figure 1: Event Handling in MIDlet
In Java callbacks are implemented using Interface.
There are four kinds of user interface callbacks in MIDP:

· Abstract commands that are part of the high-level API.

· Low-level events that represent single key presses and releases.

· Calls to the paint() method of a Canvas class.

· Calls to a Runnable object's run method requested by a call to the callSerially method of the Display class.

High-Level Event Handling
Handling events in the high-level API is based on a listener model.

· CommandListener Interface
· ItemStateListener Interface
Command:

The javax.microedition.lcdui.*; package provides the Command class.
 Command(String label, int commandType, int priority)
Command class constructor encapsulates the semantic information about the command and no action. The actual action happen when the command is activated.

label –The label is a string used for the visual representation of the command.

commandType - The type specifies the command's intent. The defined types are: BACK, CANCEL, EXIT, HELP, ITEM, OK, SCREEN, and STOP.

priority - The priority value describes the importance of this command relative to other commands on the screen. A priority value of 1 indicates the most important command, and higher priority values indicate commands of lesser importance.

When the MIDlet executes, the device chooses the placement of a command based on the command type, and places similar commands based on their priority values.
…

exitCommand = new Command("Exit", Command. EXIT, 1);
backCommand = new Command("Back", Command. BACK, 1);

moreCommand = new Command("More", Command.SCREEN, 2);

…

The Command class provides the following methods for retrieving the type, label, and priority values. This information is helpful when handling events.
· int getCommandType()
· String getLable()

· int getPriority()
As discussed earlier command only encapsulates the semantic information about the command and no action.The actual action happen when the command is activated.

This is done by:
1. Adding Commands to the displayable object using addCommand(Command cmd);
2. Adding CommandListener to the displayable object using setCommandListener(CommandListener l).

CommandListener Interface
Commands are added to a displayable object with the addCommand(..) method. However no action will be performed when a command is activated. To perform an action when a command is activated user needs to register a CommandListener with the setCommandListener(..) method. CommandListener interface has only one method commandAction(Command c, Displayable d) that the listener must implement, in order to perform action on command activation.
 public void commandAction(Command cmd, Displayable dis)

cmd - is a command object that identifies the command.
dis - is the displayable object which indentify where the event occurred.

The following code sample explains implementation of CommandListener.

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

public class MainMidlet extends MIDlet implements CommandListener {

private Display display=null;

private Command cmd_Exit = null;

private Form form;

public MainMidlet()

{

display = Display.getDisplay(this);

form = new Form ("Command Handling...");

cmd_Exit = new Command("Exit",Command.EXIT,1);

form.addCommand(cmd_Exit);

form.setCommandListener(this);

display.setCurrent(form);

}

…

…

public void commandAction(Command cmd,Displayable dis)

{

if(cmd == cmd_Exit)

{

try {

destroyApp(true);

notifyDestroyed();

} catch (MIDletStateChangeException e) {

e.printStackTrace();

}

}

}

}
ItemStateListener Interface
Applications use the ItemStateListener interface to receive events that indicate changes in the internal state of items within a Form screen. This happens when the user does any of the following:

· Adjusts the value of an interactive Gauge.
· Enters or modifies the value of a TextField.
· Enters a new date or time in a DateField.
· Changes the set of selected values in a ChoiceGroup.

This interface has only one method that a listener must implement:

 public void itemStateChanged(Item item)

User needs to set ItemStateListener using the setItemStateListener(ItemStateListener iListener) method to register a listener.

The following sample code snippet implementing ItemStateListener interface
…

form.setItemStateListener(this);

display.setCurrent(form);
…

…

public void itemStateChanged(Item item) {

if(item instanceof TextField){

String data = textField.getString();

if(data != null && data.length() >=10){
Alert alert = new Alert("TextField Data..",
data,null,AlertType.CONFIRMATION);

alert.setTimeout(1000);

display.setCurrent(alert);

}

}
…
ItemCommandListener

When a command attached to an Item, is invoked, the application is notified by having the commandAction(Command c , Item item) method called on the ItemCommandListener that had been set on the Item
This interface has only one method that a listener must implement:

 public void commandAction(Command cmd,Item item)
Use the javax.microedition.lcdui.Item.setItemCommandListener (ItemCommandListener l.) method to register a listener.
The following sample code snippet implementing ItemCommandListener
Interface
…
textField = new TextField("Name",null,30,TextField.ANY);

dateField = new DateField(null,DateField.DATE_TIME);

dateField.addCommand(cmd_Date);

dateField.setItemCommandListener(this);

textField.addCommand(cmd_Get);

textField.setItemCommandListener(this);

form.append(dateField);

form.append(textField);

…
…

public void commandAction(Command cmd, Item item) {

if((cmd == cmd_Get) && (item == textField))

{

Alert alert = new

Alert("Info",textField.getString(),null,AlertType.INFO);

alert.setTimeout(5000);

display.setCurrent(alert,form);

}

else if((cmd == cmd_Date)&& (item == dateField)) {

Alert alert = new

 Alert("Info",dateField.getDate().toString(),null,AlertType.INFO);

alert.setTimeout(5000);

display.setCurrent(alert,form);

}

}
…
Low-Level Event Handling
Low level events are events associated with the use of javax.microedition.lcdui.Canvas class in MIDlet application that handle the low – level input events , Commands or a graphics calls for drawing to the display.
Handling Commands:
Commands can be added to a Canvas in order to map soft-keys, just like High-Level UI, the application must register a listener for commands.
The following sample code snippet implementing CommandListener in Canvas.
import javax.microedition.lcdui.Canvas;

import javax.microedition.lcdui.Graphics;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.Displayable;

import javax.microedition.midlet.MIDletStateChangeException;

public class MainCanvas extends Canvas implements CommandListener{

private Command cmd_Exit = null;

private MainMidlet mainMidlet=null;

public MainCanvas(MainMidlet mid) {

mainMidlet = mid;

cmd_Exit = new Command("Exit",Command.EXIT,1);

addCommand(cmd_Exit);

setCommandListener(this);

}

protected void paint(Graphics g) {

...

}

public void commandAction(Command cmd,Displayable dis)
{

if(cmd == cmd_Exit){

try {

mainMidlet.destroyApp(true);

mainMidlet.notifyDestroyed();

} catch (MIDletStateChangeException e) {

e.printStackTrace();

}

}

}

}

Handling Key Events and Game Action:

Canvas also allows capturing of raw key-press events for most of the keys available on the device. The minimal set of keys required by the MIDP specification to be captured is:
· The digits 0 through 9
· The star or asterisk character (*)
· The pound or hash character (#)

Every key for which events are reported is assigned a key code. If your application needs arrow key and gaming-related events, use game actions instead of key codes.

Following table explain the Standard key codes and Game Action table.
	KeyCode
	Meaning

	KEY_NUM0

	Number key 0

	KEY_NUM1
	Number key 1

	KEY_NUM2
	Number key 2

	KEY_NUM3
	Number key 3

	KEY_NUM4
	Number key 4

	KEY_NUM5
	Number key 5

	KEY_NUM6
	Number key 6

	KEY_NUM7
	Number key 7

	KEY_NUM8
	Number key 8

	KEY_NUM9
	Number key 9

	KEY_STAR
	The star key (*)

	KEY_POUND
	The pound key (#)

	UP
	Game action UP

	DOWN
	Game action DOWN

	LEFT
	Game action LEFT

	RIGHT
	Game action RIGHT

	FIRE
	Game action FIRE

	GAME_A
	Custom game action A

	GAME_B
	Custom game action B

	GAME_C
	Custom game action C

	GAME_D
	Custom game action D

Event Handling Methods
In order to monitor key event, a subclass of Canvas must override one of these methods. It is important to note that the key codes are likely to be change from platform to platform.
	Method
	Description

	keyPressed(int keyCode)

	This event is called when a physical key on the keypad is pressed.

	keyReleased(int keyCode)

	This event is called when a pressed key is released.

	keyRepeated(int keyCode)
	This event is called when a key is held down. This event may not be supported on all platforms. Support of this method can be verified with a call to hasRepeatEvents().

	pointerPressed(int x,int y)
	This event is called when the pointer pressed. Support of this method can be verified with a call to hasPointerEvents()

	pointerDragged(int x,int y)
	This event is called when the pointer dragged. Support of this method can be verified with a call to hasPointerMotionEvents()

	pointerReleased(int x,int y)
	This event is called when the pointer released. Support of this method can be verified with a call to has hasPointerEvents()

	showNotify()
	This event is called when Canvas is visible on display.

	hideNotify()
	This event is called when Canvas hide form display.

	paint(Graphics g)
	To renders the Canvas. The application must implement this method in order to paint any graphics.

Key Handling Across Devices

Given that key codes can vary across platform to platform, MIDP provides key mappings so that device implementers can map the raw key events into known constant values. The simplest form of this is the numeric key mappings in the Canvas class. There are 10 constant values corresponding to a 10-digit numeric keypad, plus two more for the "*" and "#" keys.
So if the application need to detect which key is pressed do something like
…

protected void keyPressed(int keyCode) {

switch (keyCode){

…
case Canvas.KEY_NUM3:

 System.out.println(getKeyName(keyCode));

break;

...
 }

}

…

If the application need to detect which game action key is pressed do something like

protected void keyPressed(int keyCode){

int action = 0;

 try {

 action = getGameAction(keyCode);

 } catch (Exception e) {

 e.printStackTrace();

}

 switch(action){

 case Canvas.DOWN:

 System.out.println(getKeyName(keyCode));

 break;
case Canvas.GAME_A:

System.out.println(getKeyName(keyCode));

 break;

}

}

Following code snippet demonstrate the key code handling on Canvas

import javax.microedition.lcdui.Canvas;

import javax.microedition.lcdui.Graphics;

import javax.microedition.lcdui.Font;

public class MainCanvas extends Canvas {

private MainMidlet mainMidlet=null;

private String keyPress = "";

private int screenWidth;

private int screenHeight;

private String KeyValue="Key Press : ";

private Font newFont;

public MainCanvas(MainMidlet mid) {

mainMidlet = mid;

screenWidth = getWidth();

screenHeight = getHeight();

newFont =

 Font.getFont(Font.FACE_SYSTEM,Font.STYLE_PLAIN,Font.SIZE_MEDIUM);

}

protected void paint(Graphics g) {

g.setFont(newFont);

g.setColor(255,255,255);

g.fillRect(0,0,screenWidth,screenHeight);

g.setColor(0,0,0);

g.drawString(KeyValue+keyPress,((screenWidth/2)-
 (newFont.stringWidth(KeyValue+keyPress)/2))

,screenHeight/2,Graphics.LEFT|Graphics.TOP);

}

protected void keyPressed(int keyCode)
{

switch(keyCode) {

case Canvas.KEY_NUM0:

keyPress = getKeyName(keyCode);

break;

case Canvas.KEY_NUM1:

keyPress = getKeyName(keyCode);

break;

case Canvas.KEY_NUM2:

keyPress = getKeyName(keyCode);

break;

case Canvas.KEY_NUM3:

keyPress = getKeyName(keyCode);

break;

case Canvas.KEY_NUM4:

keyPress = getKeyName(keyCode);

break;

case Canvas.KEY_NUM5:

keyPress = getKeyName(keyCode);

break;

case Canvas.KEY_NUM6:

keyPress = getKeyName(keyCode);

break;

case Canvas.KEY_NUM7:

keyPress = getKeyName(keyCode);

break;

case Canvas.KEY_NUM8:

keyPress = getKeyName(keyCode);

break;

case Canvas.KEY_NUM9:

keyPress = getKeyName(keyCode);

break;

case Canvas.KEY_POUND:

keyPress = getKeyName(keyCode);

break;

case Canvas.KEY_STAR:

keyPress = getKeyName(keyCode);

break;

default:

int action = 0;

try {

 action = getGameAction(keyCode);

} catch (Exception e) {

e.printStackTrace();

}

switch(action){

case Canvas.DOWN:

keyPress =getKeyName(keyCode);

break;

case Canvas.UP:

keyPress = getKeyName(keyCode);

break;

case Canvas.FIRE:

keyPress = getKeyName(keyCode);

break;

case Canvas.LEFT:

keyPress = getKeyName(keyCode);

break;

case Canvas.RIGHT:

keyPress = getKeyName(keyCode);

break;

case Canvas.GAME_A:

keyPress = getKeyName(keyCode);

break;

case Canvas.GAME_B:

keyPress = getKeyName(keyCode);

break;

case Canvas.GAME_C:

keyPress = getKeyName(keyCode);

break;

case Canvas.GAME_D:

keyPress = getKeyName(keyCode);

break;

default:

System.out.println("Not match..");

}

}

repaint();

}

}

API Guide – v 0.9 Page 2 of 19

