
Event Handling in

Java ME
 Version 0.9, Draft

INFORMATION GUIDE

 Information Guide

 Information Guide– v 0.9 Page 2 of 18

API Guide

COPYRIGHT

Samsung Electronics Co. Ltd.
This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.
All other company and product names may be trademarks of the respective companies
with which they are associated.

 Information Guide

 Information Guide– v 0.9 Page 3 of 18

API Guide

About This Document

This document describes the event handling in Java ME and provides sample code
snippet demonstrating handling of high level and low level events.

Scope:

This document is intended for novice Java ME user. Focusing on Java and Java ME is
out of scope of this document.

Document History:

Date Version Comment

11/10/09 0.9 Draft

Abbreviations:

J2ME Java 2 Micro Edition.

MIDP Mobile Information Device Profile

CLDC Connected Limited Device Configuration

API Application Programming Interface

 Information Guide

 Information Guide– v 0.9 Page 4 of 18

API Guide

Table of Contents

Introduction... 5

Overview ... 5

CallBack ... 5

High‐Level Event Handling.. 6

Command:... 7

CommandListener Interface ... 8

ItemStateListener Interface ... 9

ItemCommandListener ... 10

Low‐Level Event Handling... 11

Handling Commands: ... 11

Handling Key Events and Game Action:.. 12

Event Handling Methods.. 14

Key Handling Across Devices.. 14

Table of Figures

Figure 1: Event Handling in MIDlet .. 6

 Information Guide

 Information Guide– v 0.9 Page 5 of 18

API Guide

Introduction

When a user interacts with a MIDlet loaded on a mobile device, some events are
generated. For example, if the user selects Exit on device, the application is notified of
this action and responds to the generated event, and the application exit. But how does
the application get notified of an event, and how does it handle it, this is the focus of this
document.

MIDP user interface APIs provide two kinds of events.

• High ‐ Level

• Low ‐ Level

Overview

In Java ME, events represent all activities between the user and the MIDlet. MIDlet
communicates these actions to the programs using events. When the user interacts with
a program by pressing a command button, the system creates an event representing the
action and hands it to the event‐handling code within the program. This code
determines how to handle the event so that the user gets the appropriate response.

CallBack

When a user interacts with a MIDlet, events are generated and the application is
modified to handle and respond to these events. The application is notified of such
events through callbacks. Callbacks are invocation of programmer‐defined methods that
are executed by the application in response to actions taken by a user at run time.

In more detail its normal parameter passing mechanism lets caller provide the callee
with information, but provides only meager flow of information in the reverse direction,
the single returned result primitive or Object. Further the callee cannot provide further
information back to the caller once it has returned. The callback mechanism allows a
two‐way flow of information and exchange of computing resources between caller and
callee.

Consider Form containing command and caller wants to control on command. The
callee wants to notify the caller whenever one of the command was pressed, and which
one. The callback mechanism, in Java called as Listener mechanism, allows the callee to

API Guide

 Information Guide

 Information Guide– v 0.9 Page 6 of 18

notify the caller, the listener, of interesting events, or to use some of the methods the
caller has access to.

Figure 1: Event Handling in MIDlet

In Java callbacks are implemented using Interface.

There are four kinds of user interface callbacks in MIDP:

• Abstract commands that are part of the high‐level API.

• Low‐level events that represent single key presses and releases.

• Calls to the paint() method of a Canvas class.

• Calls to a Runnable objectʹs run method requested by a call to the callSerially
method of the Display class.

High‐Level Event Handling

Handling events in the high‐level API is based on a listener model.

• CommandListener Interface

• ItemStateListener Interface

 Information Guide

 Information Guide– v 0.9 Page 7 of 18

API Guide

Command:

The javax.microedition.lcdui.*; package provides the Command class.

 Command(String label, int commandType, int priority)

Command class constructor encapsulates the semantic information about the command
and no action. The actual action happen when the command is activated.

label –The label is a string used for the visual representation of the command.

commandType ‐ The type specifies the commandʹs intent. The defined types are: BACK,
CANCEL, EXIT, HELP, ITEM, OK, SCREEN, and STOP.

priority ‐ The priority value describes the importance of this command relative to other
commands on the screen. A priority value of 1 indicates the most important command,
and higher priority values indicate commands of lesser importance.

When the MIDlet executes, the device chooses the placement of a command based on the
command type, and places similar commands based on their priority values.

…
exitCommand = new Command(ʺExitʺ, Command. EXIT, 1);
backCommand = new Command(ʺBackʺ, Command. BACK, 1);
moreCommand = new Command(ʺMoreʺ, Command.SCREEN, 2);
…

The Command class provides the following methods for retrieving the type, label, and
priority values. This information is helpful when handling events.

• int getCommandType()

• String getLable()

• int getPriority()

As discussed earlier command only encapsulates the semantic information about the
command and no action.The actual action happen when the command is activated.

 Information Guide

 Information Guide– v 0.9 Page 8 of 18

API Guide

This is done by:

1. Adding Commands to the displayable object using addCommand(Command cmd);
2. Adding CommandListener to the displayable object using

setCommandListener(CommandListener l).

CommandListener Interface

Commands are added to a displayable object with the addCommand(..) method. However
no action will be performed when a command is activated. To perform an action when a
command is activated user needs to register a CommandListener with the
setCommandListener(..) method. CommandListener interface has only one method
commandAction(Command c, Displayable d) that the listener must implement, in order to
perform action on command activation.

 public void commandAction(Command cmd, Displayable dis)

cmd ‐ is a command object that identifies the command.

dis ‐ is the displayable object which indentify where the event occurred.

The following code sample explains implementation of CommandListener.

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
public class MainMidlet extends MIDlet implements CommandListener {

 private Display display=null;
 private Command cmd_Exit = null;
 private Form form;

 public MainMidlet()
 {
 display = Display.getDisplay(this);
 form = new Form (ʺCommand Handling...ʺ);
 cmd_Exit = new Command(ʺExitʺ,Command.EXIT,1);
 form.addCommand(cmd_Exit);
 form.setCommandListener(this);
 display.setCurrent(form);
 }

 Information Guide

 Information Guide– v 0.9 Page 9 of 18

API Guide

 …
 …

 public void commandAction(Command cmd,Displayable dis)
 {
 if(cmd == cmd_Exit)
 {
 try {
 destroyApp(true);
 notifyDestroyed();
 } catch (MIDletStateChangeException e) {
 e.printStackTrace();
 }
 }
 }

}

ItemStateListener Interface

Applications use the ItemStateListener interface to receive events that indicate changes in
the internal state of items within a Form screen. This happens when the user does any of
the following:

• Adjusts the value of an interactive Gauge.

• Enters or modifies the value of a TextField.

• Enters a new date or time in a DateField.

• Changes the set of selected values in a ChoiceGroup.

This interface has only one method that a listener must implement:

 public void itemStateChanged(Item item)

User needs to set ItemStateListener using the setItemStateListener(ItemStateListener
iListener) method to register a listener.

The following sample code snippet implementing ItemStateListener interface

 Information Guide

 Information Guide– v 0.9 Page 10 of 18

API Guide

…
form.setItemStateListener(this);
display.setCurrent(form);
…
…
public void itemStateChanged(Item item) {

if(item instanceof TextField){

String data = textField.getString();
if(data != null && data.length() >=10){

Alert alert = new Alert(ʺTextField Data..ʺ,
data,null,AlertType.CONFIRMATION);
alert.setTimeout(1000);
display.setCurrent(alert);

}

}
…

ItemCommandListener

When a command attached to an Item, is invoked, the application is notified by having
the commandAction(Command c , Item item) method called on the ItemCommandListener
that had been set on the Item

This interface has only one method that a listener must implement:

 public void commandAction(Command cmd,Item item)

Use the javax.microedition.lcdui.Item.setItemCommandListener (ItemCommandListener l.)
method to register a listener.

The following sample code snippet implementing ItemCommandListener
Interface

…
textField = new TextField(ʺNameʺ,null,30,TextField.ANY);
dateField = new DateField(null,DateField.DATE_TIME);

 Information Guide

 Information Guide– v 0.9 Page 11 of 18

API Guide

dateField.addCommand(cmd_Date);
dateField.setItemCommandListener(this);
textField.addCommand(cmd_Get);
textField.setItemCommandListener(this);
form.append(dateField);
form.append(textField);
…
…
public void commandAction(Command cmd, Item item) {

 if((cmd == cmd_Get) && (item == textField)) {

 Alert alert = new
 Alert(ʺInfoʺ,textField.getString(),null,AlertType.INFO);
 alert.setTimeout(5000);
 display.setCurrent(alert,form);
 }
 else if((cmd == cmd_Date)&& (item == dateField)) {

 Alert alert = new
 Alert(ʺInfoʺ,dateField.getDate().toString(),null,AlertType.INFO);
 alert.setTimeout(5000);
 display.setCurrent(alert,form);

 }
 }
…

Low‐Level Event Handling

Low level events are events associated with the use of javax.microedition.lcdui.Canvas
class in MIDlet application that handle the low – level input events , Commands or a
graphics calls for drawing to the display.

Handling Commands:

Commands can be added to a Canvas in order to map soft‐keys, just like High‐Level UI,
the application must register a listener for commands.

The following sample code snippet implementing CommandListener in Canvas.

 Information Guide

 Information Guide– v 0.9 Page 12 of 18

API Guide

import javax.microedition.lcdui.Canvas;
import javax.microedition.lcdui.Graphics;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.Displayable;
import javax.microedition.midlet.MIDletStateChangeException;

public class MainCanvas extends Canvas implements CommandListener{

 private Command cmd_Exit = null;
 private MainMidlet mainMidlet=null;
 public MainCanvas(MainMidlet mid) {
 mainMidlet = mid;
 cmd_Exit = new Command(ʺExitʺ,Command.EXIT,1);
 addCommand(cmd_Exit);
 setCommandListener(this);
 }

 protected void paint(Graphics g) {

 ...
 }
 public void commandAction(Command cmd,Displayable dis) {
 if(cmd == cmd_Exit){

 try {
 mainMidlet.destroyApp(true);
 mainMidlet.notifyDestroyed();
 } catch (MIDletStateChangeException e) {
 e.printStackTrace();
 }

 }

 }
}

Handling Key Events and Game Action:

Canvas also allows capturing of raw key‐press events for most of the keys available on
the device. The minimal set of keys required by the MIDP specification to be captured is:

 Information Guide

 Information Guide– v 0.9 Page 13 of 18

API Guide

• The digits 0 through 9

• The star or asterisk character (*)

• The pound or hash character (#)

Every key for which events are reported is assigned a key code. If your application
needs arrow key and gaming‐related events, use game actions instead of key codes.

Following table explain the Standard key codes and Game Action table.

KeyCode Meaning
KEY_NUM0 Number key 0
KEY_NUM1 Number key 1
KEY_NUM2 Number key 2
KEY_NUM3 Number key 3
KEY_NUM4 Number key 4
KEY_NUM5 Number key 5
KEY_NUM6 Number key 6
KEY_NUM7 Number key 7
KEY_NUM8 Number key 8
KEY_NUM9 Number key 9
KEY_STAR The star key (*)
KEY_POUND The pound key (#)
UP Game action UP
DOWN Game action DOWN
LEFT Game action LEFT
RIGHT Game action RIGHT
FIRE Game action FIRE
GAME_A Custom game action A
GAME_B Custom game action B
GAME_C Custom game action C
GAME_D Custom game action D

 Information Guide

 Information Guide– v 0.9 Page 14 of 18

API Guide

Event Handling Methods

In order to monitor key event, a subclass of Canvas must override one of these methods.
It is important to note that the key codes are likely to be change from platform to
platform.

Method Description
keyPressed(int keyCode)

This event is called when a physical key on the
keypad is pressed.

keyReleased(int keyCode)

This event is called when a pressed key is
released.

keyRepeated(int keyCode) This event is called when a key is held down.
This event may not be supported on all
platforms. Support of this method can be
verified with a call to hasRepeatEvents().

pointerPressed(int x,int y) This event is called when the pointer pressed.
Support of this method can be verified with a
call to hasPointerEvents()

pointerDragged(int x,int y) This event is called when the pointer dragged.
Support of this method can be verified with a
call to hasPointerMotionEvents()

pointerReleased(int x,int y) This event is called when the pointer released.
Support of this method can be verified with a
call to has hasPointerEvents()

showNotify() This event is called when Canvas is visible on
display.

hideNotify() This event is called when Canvas hide form
display.

paint(Graphics g) To renders the Canvas. The application must
implement this method in order to paint any
graphics.

Key Handling Across Devices

Given that key codes can vary across platform to platform, MIDP provides key
mappings so that device implementers can map the raw key events into known constant
values. The simplest form of this is the numeric key mappings in the Canvas class. There
are 10 constant values corresponding to a 10‐digit numeric keypad, plus two more for
the ʺ*ʺ and ʺ#ʺ keys.

 Information Guide

 Information Guide– v 0.9 Page 15 of 18

API Guide

So if the application need to detect which key is pressed do something like

…
protected void keyPressed(int keyCode) {

switch (keyCode){
…
case Canvas.KEY_NUM3:
 System.out.println(getKeyName(keyCode));
break;
...
 }
}
…

If the application need to detect which game action key is pressed do something like

protected void keyPressed(int keyCode){

int action = 0;
 try {
 action = getGameAction(keyCode);

 } catch (Exception e) {
 e.printStackTrace();
 }
 switch(action){
 case Canvas.DOWN:
 System.out.println(getKeyName(keyCode));
 break;

case Canvas.GAME_A:
 System.out.println(getKeyName(keyCode));

 break;
 }
}

Following code snippet demonstrate the key code handling on Canvas

import javax.microedition.lcdui.Canvas;
import javax.microedition.lcdui.Graphics;
import javax.microedition.lcdui.Font;

 Information Guide

 Information Guide– v 0.9 Page 16 of 18

API Guide

public class MainCanvas extends Canvas {

 private MainMidlet mainMidlet=null;
 private String keyPress = ʺʺ;
 private int screenWidth;
 private int screenHeight;
 private String KeyValue=ʺKey Press : ʺ;
 private Font newFont;

 public MainCanvas(MainMidlet mid) {
 mainMidlet = mid;
 screenWidth = getWidth();
 screenHeight = getHeight();
 newFont =

Font.getFont(Font.FACE_SYSTEM,Font.STYLE_PLAIN,Font.SIZE_MEDIUM);

 }

 protected void paint(Graphics g) {
 g.setFont(newFont);
 g.setColor(255,255,255);
 g.fillRect(0,0,screenWidth,screenHeight);
 g.setColor(0,0,0);
 g.drawString(KeyValue+keyPress,((screenWidth/2)‐
 (newFont.stringWidth(KeyValue+keyPress)/2))
 ,screenHeight/2,Graphics.LEFT|Graphics.TOP);

 }
 protected void keyPressed(int keyCode) {

 switch(keyCode) {

 case Canvas.KEY_NUM0:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.KEY_NUM1:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.KEY_NUM2:
 keyPress = getKeyName(keyCode);

 Information Guide

 Information Guide– v 0.9 Page 17 of 18

API Guide

 break;
 case Canvas.KEY_NUM3:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.KEY_NUM4:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.KEY_NUM5:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.KEY_NUM6:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.KEY_NUM7:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.KEY_NUM8:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.KEY_NUM9:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.KEY_POUND:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.KEY_STAR:
 keyPress = getKeyName(keyCode);
 break;
 default:
 int action = 0;
 try {
 action = getGameAction(keyCode);
 } catch (Exception e) {
 e.printStackTrace();
 }
 switch(action){

 case Canvas.DOWN:
 keyPress =getKeyName(keyCode);
 break;
 case Canvas.UP:

 Information Guide

 Information Guide– v 0.9 Page 18 of 18

API Guide

 keyPress = getKeyName(keyCode);
 break;
 case Canvas.FIRE:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.LEFT:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.RIGHT:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.GAME_A:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.GAME_B:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.GAME_C:
 keyPress = getKeyName(keyCode);
 break;
 case Canvas.GAME_D:
 keyPress = getKeyName(keyCode);
 break;
 default:
 System.out.println(ʺNot match..ʺ);
 }
 }
 repaint();
 }
}

	Scope:
	Document History:
	Abbreviations:

