High Level Ul using List

Version 0.2, Draft

INFORMATION GUIDE

COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.

All other company and product names may be trademarks of the respective companies
with which they are associated.

About This Document

This document gives an overview of High Level class List and provides a sample code
snippet explaining the implementation of class List.

Scope

This document is intended for MIDP developers wishing to develop mobile Java ME
applications. It assumes good knowledge of java programming language.

Document History:

Date Version Comment

04/02/09 0.2 Draft

Reference:
1. MIDP 2.0 Specification:

http://jcp.org/en/jsr/detail?id=118

Abbreviations:

MIDP Mobile Information Device Profile
Ul User Interface

http://jcp.org/en/jsr/detail?id=118

Table of Contents

INEPOAUCHON. ...ttt ettt ettt
OVETVIEW .ttt sttt sttt ettt s bt et e s bt et et e e bt et e s bt e st e b e ebt et e sbesaeenbesbe et e bt enteseemeensesaesneens
EXCLUSIVE ...ttt ettt ettt ettt b ettt eb e b e
IMULTIPLE ...ttt ettt sttt et b e s sbe sttt saen
IIMIPLICTT ..ttt ettt sttt n s
Creating LiSt......coooiie e
List OPerations.......ccciiiiiiii s

Sample code snippet for the Listcccoviiiiiiiiniiiiiiciice e

Table of Figures

Figure 1: EXCIUSIVE LiSt......coovoiiiiiiiiiiciciciccccc e
Figure 2: MUltiple LiSt........ccooiiiiiiiiiice e

Figure 3: IMPIICIt LIStccoveiiriiiiiiiiciiiiccireecce e

Introduction

User can interact with the device through Screen. Screen combines and organizes
graphics objects and manages user inputs through the device. Screen is represented by
the javax.microedition.lcdui.Screen object. One of the Screen types is List.

It has a common behavior like javax.microedition.lcdui.ChoiceGroup; scrolling and
traversing but it also contains additional APL. This document focuses on List and its
importance in developing a MIDlet application.

Overview

javax.microedition.lcdui.List is an independent Displayable object that allows user to choose
between different elements. These elements consist of simple string, user can also
include image per element as well. List has a behavior common to ChoiceGroup;
scrolling, navigating, selecting and deselecting item appropriately.

List can be created in two different modes:

Single Choice: In this mode, only one element can be selected at a time from the List.

Multiple Choice: In this mode, one or more than one element can be selected at a time
from the List.

List implements javax.microedition.lcdui.Choice Interface to differentiate between these
two modes. This is done by providing the following Choice types:

EXCLUSIVE

The EXCLUSIVE choice type is used to select only one element at a time. By default, one
element is selected at any given time. List implementation uses Radio Buttons for visual
representation to the user. Figure 1 shows the EXCLUSIVE type ChoiceGroup.

EXCLUSIVE List

@ India

Q Australia

Q England
Q South Africa

Figure 1: Exclusive List

Applications for which the selected element is significant should set the selection
explicitly. There is no way for the user to deselect an element within an EXCLUSIVE
Choice. Selection in this choice type is done by selecting the target element and
deselecting the previous selected element. EXCLUSIVE type List must register at least
one Command object, otherwise no events will be sent to the command listener. This is
because the EXCLUSIVE type List does not trigger any events as the user interacts with
the list.

MULTIPLE

The MULTIPLE choice type is used to select one or more than one element in any
combination. List implementation uses Checkbox for visual representation to the user.
Figure 2 shows MULTIPLE type List. The select operation toggles the selected state of an
element, leaving the selected state of other elements unchanged. MULTIPLE type List
must register at least one Command object, otherwise no events will be sent to the
command listener. This is because the MULTIPLE type List does not trigger any events
as the user interacts with the list.

MULTIPLE List

el [nclia
Australia

m
"
"

Figure 2: Multiple List

IMPLICIT

IMPLICIT type List is similar to EXCLUSIVE; the only difference is the selection of an
element. When the user selects an item from an IMPLICIT mode list, the list notifies its
command listener using the special command object defined as
List SELECT_COMMAND. This object gets passed to the listener's
commandAction(Command c, Displayable d) method as the first argument whenever a new
item is selected. In other words, you check for implicit selection using code like this:

Figure 3 shows the IMPLICIT type List.

IMPLICIT List

Figure 3: Implicit List
Creating List

List can be created using one of the two constructors.

The List constructor requires at least a label and a type value. Additionally, a String
array and an Image array containing the elements can be passed to the constructor.

where
label -- indicates the List name.

choiceType — this variable specifies the Choice for List; EXCLUSIVE, MULTIPLE or
IMPLICIT

stringElements --set of strings specifying the string parts of the List elements.

imageElements--set of images specifying the image parts of the List elements.

List Operations
Some of the important List operations are as follows:

* Element can be added to the List using append(String stringpart, Image imagepart)
where stringpart is compulsory and imagepart can be null if no image is required
to be added to the element.

* Element can be inserted using insert(int index, String stringpart, Image imagepart)
where stringpart and imagepart are same as adding an element. Index signifies
the index of the element where insertion should occur.

* Element can be set using set(int index, String stringpart, Image imagepart) where
stringpart and imagepart are same as inserting an element.

* Element can de deleted using delete(int elemNum) where elemNum signifies the
index of the element to be deleted. All elements from ChoiceGroup can be
deleted using deleteAll() method.

* Element can be retrieved using getString(int elemNum) , getImage(int elemNum) to
get String and Image respectively by passing the elemNum. Similarly index of an
element can be retrieved using getSelectedIndex().

* Element can be selected using setSelectedIndex(int elemNum, boolean selected) where
elemNum refers to the index. The selected parameter must be true or false to
select or deselect an element.

= To check whether the element is selected isSelected(int elemNum) method can be
used.

» Total elements present in a ChoiceGroup can be determined using size() method.

Sample code snippet for the List

The sample code given below shows how to use List class.

Class: ListMidlet.java

