JSR 205 WMA 2.

sion 0.9, Draft

aSﬂMSUNG

moaile imnovaktar

API GUIDE

¢ Guide
J msx:l":} IIeriIn§cuv E DG!‘
COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law. Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.

All other company and product names may be trademarks of the respective companies
with which they are associated.

APl Guide —v 0.9 Page 1 of 32

&

SAMSUNG

mobile imnavakor

About This Document

This document covers in brief about Wireless Messaging API 2.0, it includes overview

of WMA 2.0 Architecture and APIs, followed by a sample code snippet on send and

receive MMS.

Scope

This document is intended for Java ME developers who wish to develop Java ME
applications. It assumes good knowledge of java programming language.

Document History

Date

Version

Comment

10/11/09

0.9

Draft

References

e WMA 2.0 Specification

http://jcp.org/en/jsr/detail?id=205

e WMA20APL

http://developers.sun.com/mobility/midp/articles/wma2

Abbreviations

Java ME

Java Platform Micro Edition

CLDC

Connected Limited Device Configuration

WMA

Wireless Messaging API

CBS

Cell Broadcast Service

SMS

Short Messaging Service

CGF

Generic Connection Framework

URL

Uniform Resource Locator

APl Guide —v 0.9

Page 2 of 32

http://jcp.org/en/jsr/detail?id=205
http://developers.sun.com/mobility/midp/articles/wma2

— Sl -

Table of Contents

g1l [FTox (o] o O ST RTS PR RRRTPP 4
PACKAGES. ..ttt bbbttt bRt et R e e bt et e Rt nbe et re et ens 4
WMA 2.0 MESSAGE TYPES. ...eeieeiietiiiiesie ettt nn e 5
The MeSSage INTEITACEc.veiiieieiiece et nreas 5
BT F T YAV ESEST: o -SSR 5
TEXEIMESSAGE ...ttt ettt ekttt e et e e e st et e s b e e e snb e e e nr e e e br e e nre s 6
MUITIPAITIMIESSAGE ...ttt bbbt 6
MIBSSAGEPAIT ...ttt rn e nes 8
MESSAGECONNECLIONc.vievveiiiecie ettt et e e et et e e sreene e esreesbeeneesreeneanes 8
PUSN REGISIIY ..ttt ettt b e bt eene et e et e reenbe e 9
ST 0T ISES] o] USSR 9
WIireless MeSSAgiNG APooii ettt sre et aneenne e 11
Creating and SendiNg IMESSAJESvecvveiieiueeieiie e et seeseeste e seesre e sraeste e sreenreanes 11
Creating and Sending @ TEXt MESSAJE.ccveruiiieiiierieiiese e eeese e sre e sre e 11
Yoo Vo] I] (=] T TP UPUR TR PRTPRRTRS 14
RECEIVING TEXIIMESSAGEcvveueeee ettt 14
Creating MUIIPArt IMESSA0E.ccveiireieeiesie e see et ste e sraenae e e eeenes 18
Sending MUILIPArt MESSA0Eccveiieeieeiecie ettt re e enes 22
ReceiViNg MUILIPAIT MESSAJEcoviiiieiiieiesiie sttt nreas 25
Table of Figures
Figure 1: The Message Interface and its SUbINterfacescccoovveiiiiiiiinisccee, 5
Figure 2: Structure of an MMS Multipart MESSAgE..........coeriririeierieriesie e, 7

API Guide—-v 0.9 Page 3 of 32

— Sl .

Introduction

The Wireless Messaging API 2.0 (WMA 2.0) is an optional package for the Java
Platform Micro Edition (Java ME). It is used for platform independent access to
wireless communication resources like Short Message Service (SMS), Cell Broadcast
Service (CBS) and the Multimedia Messaging Service (MMS). It is mainly used for
sending MMS which includes audio, text, image and video. The messaging API is
based on the Generic Connection Framework (GCF), which is defined in the
Connected Limited Device Configuration (CLDC) specification.

Initially WMA is introduced in the Java ME as (WMA 1.1) JSR 120; WMA 1.1 has been
enhanced and released as WMA 2.0 (JSR 205).

The differences between WMA versions 1.1 and 2.0 are related primarily to the
support of multi-part messages used for MMS messaging.

Packages
WMA 2.0 has the following packages:

javax.microedition.io : This package includes the platform networking interfaces
which have been modified for use on platforms that support message connections.

javax.wireless.messaging: This package defines an API which allows applications to
send and receive wireless messages.

javax.microedition.io

This package includes the platform networking interfaces which have been modified
for use on platforms that support message connections. It contains the Connector class
and contains SecurityException as an exception return from calls to open().

javax.wireless.messaging

This package defines an API which allows applications to send and receive wireless
messages. The APl is generic and independent of the underlying messaging protocol.

This package includes the below mentioned interfaces and classes.
BinaryMessage: interface, which is useful for Binary messages.

Message: This interface is the base interface for derived interfaces that represent various
types of messages.

APl Guide —v 0.9 age 4 of 32

& shmsune -
mobile innavaktor
MessageConnection: interface, which is useful for sending and receiving messages.
MessageListener: interface, useful to notify the incoming messages.
MultipartMessage: interface, useful for multipart messages.

TextMessage: interface, useful for the text message

MessagePart: this class is useful for adding the instance of the messagePart to
MultipartMessage.

WMA 2.0 Message Types

WMA 2.0 defines four types of message representations. Additionally, it defines a
message part in support of multipart messages, used for carrying multimedia
messages.

The Message Interface

The interface javax.wireless.messaging.Message is the base type for all messages
communicated using WMA 2.0 - A Message contains source address, destination
addresses, and a payload.

The below mentioned methods are used to get and set the message's source and

destination addresses, and to get its timestamp:

e String getAddress();
e void setAddress(String address);
e Date getTimestamp();

WMA 2.0 defines three sub interfaces of Message, as shown in Figure 1:

Message

F

| |
BinaryMessage MultipartMessage TextMessage

Figure 1: The Message Interface and its Subinterfaces
BinaryMessage

BinaryMessage subinterface represents a message with a binary payload, which can
be sent as an SMS-based short binary message. This interface declares methods to set
and get the binary payload as an array of bytes:

API Guide-v 0.9 age 5 of 32

C
— Sl jide

e byte[] getPayloadData();
e void setPayloadData(byte[] bytes);

Methods to set and get the address of the message, and to get its timestamp, are all
inherited from Message.

TextMessage

TextMessage subinterface represents a message with a text payload, which can be sent
as an SMS-based short text message. This interface provides methods to set and get
the text as an instance of String:

e String getPayloadText();
e void setPayloadText(String data);

The methods to set and get the address of the message and get its timestamp are
inherited from Message.

MultipartMessage

MultipartMessage subinterface as the name suggests represents a message that consists
of multiple parts, mainly an MMS-based multimedia message. It defines a combination
of one or more MessageParts, and provides methods to manage the sender and recipient
addresses, message's headers, "start message" content ID, and the message's parts: The
methods available are:

e boolean addAddress(String type, String address);

e void addMessagePart(MessagePart messagePart) throws sizeExceededException;
e String getAddress();

e String[] getAddresses(String type);

e String getHeader(String headerField);

¢ MessagePart getMessagePart(String contentID);

e MessagePart[] getMessageParts();

e String getStartContentld();

e String getSubject();

¢ boolean removeAddress(String type, String address);

e void removeAddresses();

¢ void removeAddresses(String type);

e boolean removeMessagePart(MessagePart messagePart);

e boolean removeMessagePartld(String contentID);

e boolean removeMessagePartLocation(String contentLocation);
e void setAddress(String address);

¢ void setHeader(String headerField, String headerValue);

¢ void setStartContentld(String contentID);

API Guide—-v 0.9 Page 6 of 32

ol

SAMSUNG i
mobile innovakor
¢ void setSubject(String subject);

MultipartMessage overrides the methods to set and get the message's address it inherits
from Message.

Multipart messages follow the format of standard emails, which consist of RFC822-
based headers and multiple parts based on the Multipurpose Internet Mail Extensions
(MIME) standard defined by the World Wide Web Consortium (W3C) in RFC2045
and RFC2046, as shown in Figure 2.

MMS Message (MultipartMessage)

MMS Headers
MIME type
Lacation
' '\H MMS Part 1
Text or Binary data \"“'-\
Part Headers
[
™
\““ Part Content
: MIME type
n]
Location
MMS Part n /..-"”
Text or Binary data
Part Headers L p P nany
//
Part Content

Figure 2: Structure of an MMS Multipart Message

The MultipartMessage interface represents the multimedia message body and its
headers, while a MessagePart class instance represents each individual MIME part.

APl Guide —v 0.9 age 7 of 32

g SAmsune TH
maobile innavakor
MessagePart

MessagePart represents one part of a message. Apart from having various constructors,
this class provides methods to retrieve the content, and the related information about
the content. The methods available are:

e MessagePart(byte[] contents, int offset, int length, String mimeType, String
contentld, String contentLocation, String encoding) throws
SizeExceededException;

e MessagePart(byte[] contents, String mimeType, String contentld, String
contentLocation, String encoding) throws SizeExceededException;

¢ MessagePart(java.io.InputStream is, String mimeType, String contentld, String
contentLocation, String encoding) throws IOException, SizeExceededException;

e public byte[] getContent();

e public InputStream getContentAsStream();

e public String getContentID();

¢ public String getContentLocation();

e public String getEncoding();

e publicint getLength();

e public String getMIMEType();

A message part consists of a MIME type as defined in RFC2046, a content ID, a
content location, and the content itself.

MessageConnection

MessageConnection defines methods for creating TextMessages, BinaryMessages, and
MultipartMessages, method to calculate the number of protocol segments needed for
sending the message, methods to receive and send messages, and a method to set the
message listener for this connection. The application opens a MessageConnection with
the Generic Connection Framework by providing a URL connection string. The methods
available are:

¢ Message newMessage(String type, String address);

¢ int numberOfSegments(Message message);

e Message receive() throws IOException, InterruptedIOException;

e void send(Message message) throws IOException, InterruptedIOException;

e void setMessageListener(MessageListener messageListener) throws IOException;

Also, the interface defines String constants, one of which used to identify the type of
the message which needs to be created by using factory method newMessage (...).

API Guide—-v 0.9 Page 8 of 32

(W) .
— Sl API Guide

e String TEXT_MESSAGE = "text_msg";
e String BINARY_MESSAGE = "binary_msg'";
e String MULTIPART_MESSAGE = "multipart_msg";

When creating a message connection, always one of the above mentioned constants
can be used.

MessageConnection can be opened and closed by the connection factory methods
javax.microedition.io.Connector.open() and javax.microedition.io.Connection.close().

Push Registry

Sometimes there is a requirement that MIDlet should auto start whenever a new
message arrives. For this PushRegistry is useful. The purpose of PushRegistry is to start
the MIDlet automatically whenever the message is received.

Permissions

WMA uses the underlying platform's security framework like to open a connection or to
send and receive messages; permissions must be requested by the application and
granted by the platform. These are implemented depending upon the requirement of
specification. In MIDP 2.0, permissions are requested by way of the JAD or the manifest,
and granted by the user when the operations invoked. For signed MIDlets, permissions
must be defined in the manifest.

Below are some of the class and methods where SecurityException is thrown.

e javax.microedition.io.Connector: if the application is not granted permission to
create a connection for a given messaging protocol, as defined by the platform
security services

e MessageConnection.send(): if the application has no permission to send
messages on the specified port

e MessageConnection.receive(): if the application has no permission to receive
messages on the specified port

API Guide —v 0.9 Page 9 of 32

— Sl API Guide

Below example shows WMA permissions requests via the JAD or manifest:

binary message to and from mobile phone originally defined as part of the GSM series of
standards.

Maximum length of an each message is 160 characters.

The base interface that is implemented by all messages is named as
javax.wireless.messaging.Message. It provides methods for addresses and timestamps.

Message interface provides methods that are common for all messages.

The data part of the message consists of both text message and binary message, which
are represented by TextMessage and BinaryMessage interfaces which are derived from
Message. The message sending and receiving functionality is implemented by a
MessageConnection (derived from Connection interface of Generic Connection
Framework (GCF)). The methods for sending and receiving messages can throw a
java.lang.SecurityException.

API Guide —v 0.9 Page 10 of 32

- ol bbb API Guide

Wireless Messaging API

Creating and Sending Messages

A client mode connection is created by passing a string identifying a destination address
to the Connector.open () method. This method returns a MessageConnection object as
follows:

MessageConnection provides methods to create and send Messages. To create a message
call the message factory method newMessage(...), and to send a message use the
method send().

Creating and Sending a Text Message

The following code snippet is used for creating and sending a Text message.
Methods which are useful in this process are:

getAddress() : Returns the address associated with this message..
getTimestamp():Returns the timestamp indicating when this message has been sent.

setAddress(String): Sets the address associated with this message, that is, the address
returned by the getAddress()method. The address may be set to null.

API Guide —v 0.9 Page 11 of 32

http://innovator.samsungmobile.com/cms/cnts/knowledge.detail.view.do?platformId=3&cntsId=1387

a §nglzwiln§auvclN|=nGr API GUIde

API Guide -v 0.9 Page 12 of 32

- ol API Guide

API Guide -v 0.9 Page 13 of 32

a §=’;lle.viln§auvclNi=nGr API GUIde

MessageListener

Whenever a message arrives, the receiving of a message can be identified by a
MessageListener. For this there is a need of setting a server connection and
implementing a MessageLstener. When an incoming message arrives, the
notifyIncomingMessage() method is called.

The below code snippet will do it.

Called by the platform when an incoming message arrives to a MessageConnection
where the application has registered this listener object.

This method is called once for each incoming message to the MessageConnection.

Receiving TextMessage

API Guide -v 0.9 Page 14 of 32

a §nglzwiln§auvclN|=nGr API GUIde

API Guide -v 0.9 Page 15 of 32

- ol API Guide

API Guide -v 0.9 Page 16 of 32

- ol API Guide

API Guide -v 0.9 Page 17 of 32

o

L el AP Guide

The method assumes the TextMessage has already been created.

Sending binary and multipart messages follows the same pattern.
Creating Multipart Message

As MessageParts are at the center of MultipartMessages, each includes its own a MIME
type, a unique content ID, and the content itself.

We can construct a MessagePart from a byte array or a java.io.InputStream. Three
constructors are available:

e MessagePart(byte[] contents, int offset, int length, String mimeType, String
contentld, String contentLocation, String encoding) throws
SizeExceededException

e MessagePart(byte[] contents, String mimeType, String contentld, String
contentLocation, String encoding) throws SizeExceededException

e MessagePart(java.io.InputStream contents, String mimeType, String contentld,
String contentLocation, String encoding) throws IOException,
SizeExceededException

Where:

o Contents: refers to the actual message content.

o mime Type :is the MIME type, as defined in RFC2046.

o Contentld :is a required ID that uniquely identifies a message part, as defined in
RFC2045.

o ContentLocation: specifies the filename for the attached message represented by
the content. A null value means that no content location value is set for this
message part.

e encoding: identifies the content's encoding scheme. A null value means that no
encoding is specified for this message part.

API Guide -v 0.9 Page 18 of 32

(W) .
— Sl AP Guide

The first two constructors enable to create the message part from a byte array, while
the last constructor used to create the message part from an InputStream.

The following APIs are useful in this process.

addAddress(String, String): Adds an address to the multipart message.
addMessagePart(MessagePart): Attaches a MessagePart to the multipart message
getAddress():Returns the “from” address associated with this message

getHeader(String): Gets the content of the specific header field of the multipart
message.

getMessagePart(String): returns a MessagePart from the message that matches the
content-id passed as a parameter

getStartContentld():Returns the contentld of the start MessagePart
getSubject():Gets the subject of the multipart message

removeMessagePart(MessagePart): Removes a MessagePart from the multipart
message

removeMessagePartld(String): Removes a MessagePart with the specific contentID
from the multipart message

removeMessagePartLocation(String): Removes MessageParts with the specific content
location from the multipart message

setAddress(String): Sets the “to” address associated with this message
setHeader(String, String): Sets the specific header of the multipart message

setStartContentld(String): Sets the Content-ID of the start MessagePart of a multipart
related message

setSubject(String): Sets the Subject of the multipart message.

removeAddress(String, String): Removes an address from the multipart message.

The following code snippet is used for creating a MultipartMessage.

API Guide -v 0.9

Page 19 of 32

a §nglzwiln§auvclN|=nGr API GUIde

API Guide -v 0.9 Page 20 of 32

a §nglzwiln§auvclN|=nGr API GUIde

API Guide -v 0.9 Page 21 of 32

a §nglzwiln§auvclN|=nGr API GUIde

Sending Multipart Message

The below mentioned code snippet is useful for sending multipart message:

API Guide -v 0.9 Page 22 of 32

a §=lgllzviln§auvclNi=nGr API GUIde

API Guide -v 0.9 Page 23 of 32

a §nglzwiln§auvclN|=nGr API GUIde

API Guide -v 0.9 Page 24 of 32

a §=lgllzviln§auvclNi=nGr API GUIde

Receiving Multipart Message

The following code snippet illustrates how to create two message parts, one text/plain
and the other image/png.

API Guide -v 0.9 Page 25 of 32

a §nglzwiln§auvclN|=nGr API GUIde

API Guide -v 0.9 Page 26 of 32

a §nglzwiln§auvclN|=nGr API GUIde

API Guide -v 0.9 Page 27 of 32

- ol API Guide

There is a need to check the validity of the phone number. The following code snippet
will do the required one.

API Guide -v 0.9 Page 28 of 32

- ol API Guide

API Guide -v 0.9 Page 29 of 32

§n2lzwlln§auvclN|=nGr AP I G u Ide

Send the message by calling on a separate thread so there won’t be any contention for
the display.

Use the following code snippet for this.

API Guide -v 0.9 Page 30 of 32

- ol API Guide

API Guide -v 0.9 Page 31 of 32

	JSR 205 WMA 2.0
	Scope
	Document History
	References
	Abbreviations

