

JSR 75 ‐ File Connection
 Version 0.9, Draft

API GUIDE

API Guide – v 0.9 Page 2 of 16

API Guide

COPYRIGHT

Samsung Electronics Co. Ltd.
This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law. Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.
All other company and product names may be trademarks of the respective companies
with which they are associated.

API Guide – v 0.9 Page 3 of 16

API Guide

About This Document

This document describes about FileConnection optional package javax.microedition.io.file
(JSR‐75) and provides sample code snippets.

Scope

This document is intended for users who have knowledge of Java programming
language. Focusing on Java and Java ME is out of scope of this document.

Document History:

Date Version Comment

17/06/09 0.9 Draft

References:

1. JSR 75 specification:
http://jcp.org/en/jsr/detail?id=75

2. JSR 75 Article:
http://developers.sun.com/mobility/apis/articles/fileconnection/

Abbreviations:

1. Java ME Java Micro Edition
2. MIDP Mobile Information Device Profile
3. CLDC Connection Limited Device Configuration
4. API Application Programming Interface
5. JSR Java Specification Request
6. GCF Generic Connection Framework
7. FC File Connection
8. FCOP File Connection Optional Package
9. PIM Personal Information Management

http://jcp.org/en/jsr/detail?id=75
http://developers.sun.com/mobility/apis/articles/fileconnection/

API Guide – v 0.9 Page 4 of 16

API Guide

Table of Contents

Introduction... 5

Overview ... 5

API Description of FCOP .. 5

Detecting FileConnection API’s presence... 6

File Separator .. 6

Establishing Connection.. 7

Example to create a FileConnection:.. 7

Example to create file in the directory... 8

FileConnection Operations.. 8

JSR 75 – File Connection Example.. 10

API Guide – v 0.9 Page 5 of 16

API Guide

Introduction

JSR 75 is an optional package that includes two packages. These are the light weighted
APIs on devices that implement JSR 75, FileConnection (FC) javax.microedition.io.file.*;
and Personal Information Management (PIM)javax.microedition. pim.*;
FileConnection package enables Java ME applications to create, read, and write files and
directories located in mobile devices and external memory cards.
CLDC 1.0 is the minimum requirement for this API set.

Overview

JSR 75 allows developers to access two major areas. They are FileConnection and
Personal Information Management.

• FileConnection

The FileConnection Optional Package (FCOP) API gives Java ME devices access to file
systems residing on mobile devices, primarily access to removable storage media such
as external memory cards and to do file operations.

• Personal Information Management

The PIM Optional Package (PIM) APIs give Java ME devices access to personal
information management data native to mobile devices, such as address books,
calendars, events and to‐do lists.

API Description of FCOP:

FileConnection Optional Package API is defined in the package javax.microedition.io.file
which includes the two interface and three classes.

Interface Description

FileConnection This interface is intended to access files or
directories that are located on removable media
and/or file systems on a device.

FileSystemListener This class is used for receiving status
notification when adding or removing a file
system root.

API Guide – v 0.9 Page 6 of 16

API Guide

Class Description
FileSystemRegistry The FileSystemRegistry is a central registry

for file system listeners interested in adding
and removing (or mounting and
unmounting) of file systems on a device.

ConnectionClosedException Exception thrown when a method of a file
connection is invoked but cannot be
completed because the connection is closed.

IllegalModeException Exception thrown when a method is
invoked that requires a particular security
mode, such as READ or WRITE, but the
connection opened is not in that mode.

Detecting FileConnection API’s presence:

To check whether the handset supports FileConnection API,

System.getProperty(ʺmicroedition.io.file.FileConnection.version ʺ).

can be used. If it is supported, the FileConnection version is returned else null will be
returned if it is not supported.

public class MainMidlet extends MIDlet {

public MainMidlet() {

 Form form = new Form(ʺFile Connection versionʺ);
 form.append(System.getProperty(ʺmicroedition.io.file.FileConnection.versionʺ));
 Display.getDisplay(this).setCurrent(form);
}
…
}

File Separator

In addition to the system property microedition.io.file.FileConnection.version,
FileConnection implementations support system property file.separator.

The file.separator property returns a string representing the file separator character(s)
for the underlying platform. For example, ʺ\ʺ would be returned on a Windows OS
based platform, and ʺ/ʺ would be returned on a Unix system.

API Guide – v 0.9 Page 7 of 16

API Guide

…
form.append(System.getProperty(ʺmicroedition.io.file.FileConnection.versionʺ));
form.append(System.getProperty(ʺfile.separator ʺ));
…

Establishing Connection:

File Connection APIs use the Generic Connection Framework (GCF) for file‐system
connectivity. This application opens the file connection using Connector.open (String
protocol) the string protocol must comprise a fully qualified absolute path like:

file://host/root/directory/.../name

host ‐ The host element may be empty ‐ and often will be, when the string refers to a file
on the local host.
root – The root element may be empty and corresponds to a logical mount point for a
particular storage unit.
directory – directory name
name – file name.

Following are some examples of root values and how to open them:

To open CFcard (Compact flash card): (FileConnection)

Connector.open(ʺfile:///CFCard/ʺ);
To open the SDcard (Secure Digital card): (FileConnection)

Connector.open(ʺfile:///SDCard/ʺ);
To open Memory Stick: (FileConnection)

Connector.open(ʺfile:///MemoryStick/ʺ);
To open the any device drive: (FileConnection)

Connector.open(ʺfile:///C:/ʺ);

Example to create a FileConnection:

 …
 private final String URL=file://localhost/root1/mytext.txt;
 FileConnection fileConn=
 (FileConnection)Connector.open(URL,Connector.READ_WRITE);
/*do file/directory operations */
…
fileConn.close();
…

API Guide – v 0.9 Page 8 of 16

API Guide

Actual file or directory that the URL is pointing to, does not exist while creating a
FileConnection. Therefore opening a file/directory and creating a new file/directory is
very similar. Remember to close the FileConnection object using
fileConn.close();

FC, which is pointing to a non‐existent file, will not be able to perform any file or
directory specific operations.

Example to create file in the directory:

…

 public void createFile() {
 final String URL=ʺfile:///root1/SMIʺ;
 FileConnection fileConn=null;
 try {
 fileConn=(FileConnection)Connector.open(URL,Connector.READ_WRITE);
 if(!fileConn.isDirectory())
 fileConn.mkdir();
 fileConn.close();
 fileConn=(FileConnection)Connector.open(URL+ ”temp.txt”,Connector.READ_WRITE);

 if(!fileConn.exists())
 {
 fileConn.create();
 }
 fileConn.close();
 } catch (IOException e) {
 e.printStackTrace();
 }

 }
…

FileConnection Operations:

You can perform several operations with FileConnection object once the file connection
is successful. Some of them are:

• To discover whether a file or directory exists using exists().

• To discover whether a file or directory is hidden using isHidden().

• To create or delete a file or directory using create(), mkdir(), or delete().

API Guide – v 0.9 Page 9 of 16

API Guide

• For a list of all the valid root values in a device, call the listRoots() method of

FileSystemRegistry.

• To list the content of a directory that your FileConnection is pointing to use list()

…
Enumeration e = fileConn.list();
while (e.hasMoreElements()) {
form.append(((String)e.nextElement()));
}
…

• Call method list(String filter, boolean includeHidden) to get the filtered list of files
and directory.

filter ‐ String against which all files and directories are matched for retrieval.
An asterisk (ʺ*ʺ) can be used as a wildcard to represent 0 or more occurrences of any
character.

- includeHidden ‐ boolean indicating whether files marked as hidden should be
included or not in the list of files and directories returned.

• To write to a file you need to get an OutputStream from the FileConnection object

that points to the existing file:
OutputStream os = fileConn.openOutputStream()

• To read from a file you need to get an InputStream from the FileConnection object
that points to the existing file:
InputStream os = fileConn.openInputStream()

• fileConn. canRead() and fileConn.canWrite() are used to check whether the
file/directory is readable or writable. Both methods returns boolean, which
indicates whether a file can be read / write.

• fileConn.directorySize(boolean includeSubDirs) is used to determine the size of all
the files that are contained in a directory in a file system.

• fileConn.fileSize() is used to determine the size of a file. You can set your file to be
hidden/readable/writeable by using fileConn.setHidden(boolean hidden),
fileConn.setReadable(boolean readable), fileConn.setWritable(boolean writable)

• fileConn.lastModified() is used to determine when was the file last modified.

API Guide – v 0.9 Page 10 of 16

API Guide

JSR 75 – File Connection Example:

This code snippet demonstrates how to create, delete a file and folder using
javax.microedition.io.file.*; package.

import java.io.IOException;
import javax.microedition.midlet.MIDlet;
import javax.microedition.midlet.MIDletStateChangeException;
import javax.microedition.lcdui.Alert;
import javax.microedition.lcdui.AlertType;
import javax.microedition.lcdui.Choice;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.List;
import javax.microedition.lcdui.Image;
import javax.microedition.lcdui.Displayable;
import java.util.Enumeration;
import javax.microedition.io.Connector;
import javax.microedition.io.file.FileConnection;
import javax.microedition.io.file.FileSystemRegistry;
import javax.microedition.lcdui.Form;
import javax.microedition.lcdui.TextField;
import javax.microedition.lcdui.ChoiceGroup;
public class FileMidletDemo extends MIDlet implements CommandListener{

 private Display display = null;
 private final Command CMD_EXIT = new Command(ʺExitʺ,Command.EXIT,1);
 private final Command CMD_VIEW = new
 Command(ʺViewʺ,Command.SCREEN,2);
 private final Command CMD_NEW = new
 Command(ʺNewʺ,Command.SCREEN,3);
 private final Command CMD_OK = new Command(ʺOkʺ,Command.OK,4);
 private final Command CMD_DELETE = new
 Command(ʺDeleteʺ,Command.SCREEN,5);
 private final String SEPERATOR = ʺ/ʺ;
 private Image image_dir = null;
 private Image image_file = null;
 private final char SEP =ʹ/ʹ;
 private final String INIT_DIR=ʺ..ʺ;
 private String currentDir;
 private TextField textField=null;
 private ChoiceGroup choiceGroup=null;
 public FileMidletDemo() {

 currentDir = SEPERATOR;

API Guide – v 0.9 Page 11 of 16

API Guide

 initRes();
 display = Display.getDisplay(this);
 initFileSys();

 }

 protected void destroyApp(boolean arg0) throws MIDletStateChangeException {

 }

 protected void pauseApp() {

 }

 protected void startApp() throws MIDletStateChangeException {

 }
 private void createFile()
 {
 Form form = new Form(ʺNew Fileʺ);
 textField = new TextField(ʺEnter Nameʺ,null,256,TextField.ANY);
 choiceGroup = new ChoiceGroup(ʺEnter the file
 Nameʺ,Choice.EXCLUSIVE, new String[]{ʺRegular Fileʺ,ʺDirectoryʺ},new
 Image[]{image_file,image_dir});
 form.addCommand(CMD_EXIT);
 form.addCommand(CMD_OK);
 form.append(textField);
 form.append(choiceGroup);
 form.setCommandListener(this);
 display.setCurrent(form);
 }
 private void executeMentionFile(String newFile,boolean isDir)
 {
 try {
 FileConnection fileConn
 = (FileConnection)Connector.open(ʺfile:///ʺ+currentDir+newFile);

 if(isDir)
 fileConn.mkdir();
 else
 fileConn.create();

 initFileSys();

API Guide – v 0.9 Page 12 of 16

API Guide

 } catch (IOException e) {

 e.printStackTrace();
 }
 }
 private void showFile(String fileName)
 {

 }
 private void traversDir(String fileName)
 {

 if (currentDir.equals(SEPERATOR)) {

 if (fileName.equals(INIT_DIR))
 return;
 currentDir = fileName;
 } else if (fileName.equals(INIT_DIR)) {

 int i = currentDir.lastIndexOf(SEP, currentDir.length() ‐ 2);

 if (i != ‐1) {
 currentDir = currentDir.substring(0, (i + 1));
 } else {
 currentDir = SEPERATOR;
 }
 } else {
 currentDir = currentDir + fileName;
 }

 initFileSys();

 }
 private void deleteFolder(String folder)
 {
 try {
 FileConnection fileConn
 = (FileConnection)Connector.open(ʺfile://localhost/ʺ+currentDir+folder);

 Enumeration e = fileConn.list(ʺ*ʺ,true);
 if(!e.hasMoreElements())
 {
 fileConn.delete();
 initFileSys();
 }
 else
 {

API Guide – v 0.9 Page 13 of 16

API Guide

 Alert alert = new Alert(ʺError!!!ʺ,ʺCannʹt delete empty
 folderʺ,null,AlertType.ERROR);
 alert.setTimeout(Alert.FOREVER);
 alert.addCommand(CMD_EXIT);
 alert.setCommandListener(this);
 display.setCurrent(alert);
 }

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 private void deleteFile(String file)
 {

 try {
 FileConnection fileConn
 = (FileConnection)Connector.open(ʺfile://localhost/ʺ+currentDir+file);
 fileConn.delete();
 } catch (IOException e) {
 Alert alert = new Alert(ʺError!ʺ,
 ʺCan not access/delete file ʺ + file + ʺ in directory ʺ + currentDir +
 ʺ\nException: ʺ + e.getMessage(), null, AlertType.ERROR);
 alert.setTimeout(Alert.FOREVER);
 alert.addCommand(CMD_EXIT);
 alert.setCommandListener(this);
 display.setCurrent(alert);
 }

 }

 private void delete(String file)
 {
 if(!file.endsWith(INIT_DIR))
 {
 if(file.charAt(file.length()‐1)== SEP)
 {
 deleteFolder(file);
 }
 else
 {
 deleteFile(file);
 }
 }
 initFileSys();

 }

API Guide – v 0.9 Page 14 of 16

API Guide

 private void initRes()
 {
 try {
 image_dir = Image.createImage(getClass().getResourceAsStream(ʺ/dir.pngʺ));
 image_file = Image.createImage(getClass().getResourceAsStream(/file.pngʺ));
 } catch (IOException e) {
 e.printStackTrace();
 }

 }

 private void initFileSys() {
 List dirList = null;
 Enumeration e = null;
 FileConnection fileConn = null;

 if (SEPERATOR.equals(currentDir)) {
 e = FileSystemRegistry.listRoots();
 dirList = new List(currentDir, Choice.IMPLICIT);
 } else {
 try {
 fileConn = (FileConnection) Connector.open(ʺfile://localhost/ʺ
 + currentDir);
 e = fileConn.list();
 dirList = new List(currentDir, Choice.IMPLICIT);
 dirList.append(INIT_DIR, image_dir);
 } catch (IOException e1) {

 e1.printStackTrace();
 }
 }
 while (e.hasMoreElements()) {
 String element = (String) e.nextElement();
 if (element.charAt(element.length() ‐ 1) == SEP)
 dirList.append(element, image_dir);
 else
 dirList.append(element, image_file);
 }
 if (fileConn != null)
 try {
 fileConn.close();
 } catch (IOException e1) {
 e1.printStackTrace();
 }
 dirList.addCommand(CMD_EXIT);
 dirList.addCommand(CMD_VIEW);
 dirList.addCommand(CMD_NEW);

API Guide – v 0.9 Page 15 of 16

API Guide

 dirList.addCommand(CMD_DELETE);
 dirList.setCommandListener(this);
 display.setCurrent(dirList);
 }

 public void commandAction(Command cmd,Displayable dis)
 {
 if(cmd == CMD_EXIT)
 {
 try {
 destroyApp(true);
 notifyDestroyed();
 } catch (MIDletStateChangeException e) {
 e.printStackTrace();
 }
 }
 else if(cmd == CMD_VIEW)
 {

 List dirList =(List)dis;
 final String currentfile =
 dirList.getString(dirList.getSelectedIndex());
 new Thread(new Runnable(){
 public void run()
 {
 if(currentfile.charAt(currentfile.length()‐
 1)==SEP
 ||currentfile.endsWith(INIT_DIR))
 {

 traversDir(currentfile);

 }
 else
 {
 showFile(currentfile);
 }
 }
 }).start();
 }
 else if(cmd == CMD_NEW)
 {
 createFile();
 }
 else if (cmd == CMD_OK)
 {
 final String newFile = textField.getString();

API Guide – v 0.9 Page 16 of 16

API Guide

 if(newFile == null || newFile.equals(ʺʺ))
 {
 Alert alert = new Alert(ʺError!!!ʺ,ʺFile name is
 empty....ʺ,null,AlertType.ERROR);
 alert.setTimeout(Alert.FOREVER);
 alert.addCommand(CMD_EXIT);
 alert.setCommandListener(this);
 display.setCurrent(alert);

 }
 else
 {
 new Thread(new Runnable(){
 public void run()
 {
 executeMentionFile(newFile,(choiceGroup.getSelectedIndex())!=0);
 }
 }).start();
 }
 }
 else if(cmd == CMD_DELETE)
 {
 List list = (List)dis;
 final String file = list.getString(list.getSelectedIndex());
 new Thread(new Runnable(){
 public void run()
 {
 delete(file);
 }
 }).start();
 }
 }
}

	JSR 75 - File Connection
	Scope
	Document History:
	References:
	Abbreviations:

