
JSR 75 ‐ PIM
 Version 0.9, Draft

API GUIDE

API Guide – v 0.9 Page 2 of 26

API Guide

COPYRIGHT

Samsung Electronics Co. Ltd.
This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law. Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.
All other company and product names may be trademarks of the respective companies
with which they are associated.

API Guide – v 0.9 Page 3 of 26

API Guide

About This Document

This document describes the PIM optional package javax.microedition.pim (JSR‐75) and
provides sample code snippets.

Scope

This document is for user who has the knowledge of Java ME and wants a brief
introduction of JSR 75 ‐ PIM.

Document History:

Date Version Comment

18/06/09 0.9 Draft

References:

1. JSR 75 specification: http://jcp.org/en/jsr/detail?id=75

2. PIM Article: http://developers.sun.com/mobility/apis/pim/pim5/

Abbreviations:

Java ME Java Micro Edition

JSR Java Specification Request

API Application Programming Interface

MIDP Mobile Information Device Profile

PIM Personal Information Management

MSA Mobile Service Architecture

SIM Subscriber Identity Module

http://jcp.org/en/jsr/detail?id=75
http://developers.sun.com/mobility/apis/pim/pim5/

API Guide – v 0.9 Page 4 of 26

API Guide

Table of Contents

Introduction... 5

Overview ... 5

The PIM class .. 7

The PIMList Interface and Sub‐Interface .. 8

The PIMItem Interface and Sub‐Interfaces ... 9

Field.. 9

Label... 10

Data Type .. 10

Data Value... 10

Attributes... 10

Test Presence of PIM API.. 10

Test PIM database .. 11

PIM API for Java ME – Permissions .. 12

Discovering supported serial data formats .. 17

List of Figures

Figure 1: PIM data organization... 7

Figure 2: PIMList Interface and Sub‐Interface.. 8

Figure 3: : PIMItem Interface and Sub‐Interface .. 9

API Guide – v 0.9 Page 5 of 26

API Guide

Introduction

The PIM API is an optional JSR 75 package javax.microedition.pim.*; that gives support to
access and modify the PIM database that may exist in a MIDP device. The purpose of
PIM API is to give a standardized interface to those databases, which could be used
across different type of devices in secure fashion.

The PIM API currently supports the three types of database or lists:

• Contact lists

• Event lists

• To‐Do lists

These three types of database may not be necessarily available in a particular device, but
the specification mentions that the API that has been implemented in a device, at least
one database of one type should be available. An implementation may contain more
than one list of the same type on device, for example, a mobile device can have a contact
list contained in the device memory and another in the device SIM card.

Overview

The PIM API is one of the mandate APIs defined by the Mobile Service Architecture
(MSA) specification. PIM API encapsulated in a single package javax.microedition.pim.*
includes the following interfaces, classes and exception.

Table 1: the javax.microedition.pim Optional Package

Interface Description
Contact It represents a single Contact entry in a PIM Contact database. The

supported field list for a Contact is also a subset of the fields defined
by the vCard specification. It is also responsible for
UnsupportedFieldException.

ContactList It represents a Contact list containing Contact items. A Contact List is
responsible for determining which of the fields from a Contact are
retained when a Contact is persisted into the List. It is also
responsible for java.lang.IllegalArgumentException.

Event It represents a single Event entry in a PIM Event database. The fields
are a subset of the fields in the vEvent object defined by the
vCalendar 1.0 specification. It is also responsible for
UnsupportedFieldException.

API Guide – v 0.9 Page 6 of 26

API Guide

EventList It represents an Event list containing Event items. An Event List is
responsible for determining which of the fields from an Event are
retained when an Event is persisted into the List. It is also responsible
for java.lang.IllegalArgumentException.

PIMItem It represents the common interfaces of an item for a PIM list.
A PIM item represents a collection of data for a single PIM entry.

PIMList It represents the common functionality of a PIM list. PIMLists contain
zero or more PIMItems (represented by the class PIMItem).

ToDo It represents a single To Do item in a PIM To Do database. The fields
are a subset of the fields in VTODO defined by the vCalendar
specification. It is also responsible for UnsupportedFieldException.

ToDoList It represents a ToDo list containing ToDo items. A ToDo List is
responsible for determining which of the fields from a ToDo are
retained when a ToDo is persisted into the List. It is also responsible
for java.lang.IllegalArgumentException

Classes Description
PIM This Class for accessing PIM lists on a device and performing

opening the lists, converting raw data streams to and from PIM
items for importing and exporting into those lists.

RepeatRule It represents a description for a repeating pattern for an Event
item. The fields are a subset of the capabilities of the RRULE field
in VEVENT defined by the vCalendar 1.0 specification.

Exceptions Description

FieldEmptyException It represents an exception thrown when an attempt is made to
access a field that does not have any data values associated with
it.

FieldFullException It represents an exception thrown when an attempt is made to
add data to a field but the field already has all available slots for
data values assigned.

PIMException It represents exceptions thrown by the PIM classes. This class
has a reason code optionally associated with it to provide more
information about the PIM exception that occurred.

UnsupportedFieldEx
ception

It represents an exception thrown when a field is referenced that
is not supported in the particular PIM list that an element
belongs to.

API Guide – v 0.9 Page 7 of 26

API Guide

PIM data is organized into databases or lists. Multiple lists can exist for calendar events,
address‐book contacts, and to‐do items. PIM lists contain Item(s), which are grouping of
the related fields. A field consists of a label, data type, values and attributes.

Figure 1 shows the PIM Organization data model.

Figure 1: PIM data organization

In this data model, PIM lists or databases are represented by interface
javax.microedition.pim.PIMList and its sub‐interfaces. PIM Items are represented by
interface javax.microedition.pim.PIMItem and its sub‐interfaces. Fields are represented by
the corresponding Java data type such as String, Date, int, boolean, arrays of bytes and
Strings.

The PIM class

The abstract PIM class provides access to the PIM implementation. The PIM class
exposes a static method to retrieve the PIM instance itself and abstract methods to
manage the PIM lists/databases and to import and export PIM data:

getInstance() ‐ static method to retrieve the PIM instance that allows to manage the local
PIM.

API Guide – v 0.9 Page 8 of 26

API Guide

listPimList(int pimListType) ‐ abstract method to get the names of existing PIM databases.
openPimList(int pimListType, int mode) and openPimList(int pimListType, int mode, String
name) ‐ abstract method to open the default database, or open a specific database by
name.

fromSerialFormat(...) and toSerialFormat(...) ‐ abstract methods to import and export PIM
data respectively.

supportedSerialFormats(...) ‐ abstract method to get the supported PIM data exchange
formats such as vCard version 2.1 and vCalendar version 1.0.

The PIMList Interface and Sub‐Interface

Figure 2: PIMList Interface and Sub‐Interface

The PIM class provides access to the PIM lists to access PIM databases themselves. PIM
lists are represented by the PIMList interface and its sub‐interfaces as described next.

• PIMList represents a PIM database in general

• Contact List represents the contact list database

• EventList represents the calendar events database

• ToDoList represents the to‐do list database

API Guide – v 0.9 Page 9 of 26

API Guide

The PIMItem Interface and Sub‐Interfaces

Figure 3: PIMItem Interface and Sub‐Interface

PIM lists are collections of PIM items. PIM items as the rows or records of the database.
PIM items are represented by the PIMItem super‐interface and its sub‐interfaces as
described next:

• PIMItem is a generalization of PIM data, such as contact, calendar or a to‐do item

• Contact represents a contact item in the address book database

• Event represents an event in the calendar database

• ToDo represents a to‐do item in the To‐Do database

Following section explains PIM data organization shown in Figure 1:

Field

PIM items are groupings of related fields. Fields are specific to the type of PIMItem. For
example, a calendar event item consists of fields such as start and end‐event times, event
description, location, and other. The address‐book item contains fields such as first and
last‐names, home and work phone numbers and addresses, email addresses, and so on.
Fields have an ID, a descriptive label, a data type, values, and attributes, as illustrated in
figure 1.

API Guide – v 0.9 Page 10 of 26

API Guide

Fields are uniquely identified within a given PIM list/item by field ID. Field IDs are
constants that are defined by the specific PIM item Contact, Event and ToDo. For
example, the Contact PIM item defines the fields Contact. NAME, Contact.ADDR etc.
Fields are considered standard or extended fields. Standard fields are the common fields
while extended fields are PIM implementation specific fields that must be discovered.
All supported fields can be discovered by calling the method getSupportedFields() for
the particular PIM list. Extended fields are easy to identify because their field ID values
are greater than or equal to PIMItem.EXTENDED_FIELD_MIN_VALUE.

Label

The fieldʹs label is a String that describes the field. To discover a fieldʹs label call the
PIMList method getFieldLabel(int field ID), passing as argument the field ID of interest.

Data Type

Field data types are INT, BINARY, BOOLEAN, DATE, STRING_ARRAY or STRING, as
defined in PIMList. To discover a fieldʹs data type, call the PIMList method
PIMList.getFieldDataType(int field ID), passing as argument the field ID of interest.

Data Value

Fields can have zero or more data values. Simple fields are represented by the
corresponding Java data type, while a multi‐value or compound field is represented by
an array, such as String or byte arrays. And example of a multi‐value field is NAME,
which consists of first, middle and last name. To manipulate the fieldʹs value, you first
need to know or discover its data type as mentioned above, and invoke the appropriate
method.

Attributes

Attributes further define field data values. For example, a Telephone (Tel) field, which
has a data type of PIMItem.STRING, can be further qualified using predefined attributes
such as the home telephone number (ATTR_HOME), work telephone number
(ATTR_WORK), mobile telephone number (ATTR_MOBILE) or other type of telephone
number. Attributes are optional, and are specified when adding data values to a field.

Test Presence of PIM API

To test the presence of PIM API on handset, call System.getProperty(String property)
method, passing as argument the String value ʺmicroedition.pim.versionʺ. The method call
will return (a non‐null String) the version of the API, if the optional package is present,
and null if the API is not present.

API Guide – v 0.9 Page 11 of 26

API Guide

…
private Form form=null;
 private String pimVersion=null;

 public PIMMidlet()
 {
 form = new Form(ʺPIM versionʺ);
 pimVersion = System.getProperty(ʺmicroedition.pim.versionʺ);
 if (pimVersion!=null)
 form.append(pimVersion);
 else
 form.append(ʺPIM package is not supportedʺ);

 Display.getDisplay(this).setCurrent(form);
 }
…

Test PIM database

To test given PIM database type ContactList, EventList, ToDoList is supported or not on
given handset call method PIM.openList (int listType, mode) to test if a specific list type is
supported.

…
private PIM pim=null;
 private EventList eventList=null;
 public PIMMidlet() {
 pim = PIM.getInstance();
 try {
 eventList = (EventList) pim.openPIMList(PIM.EVENT_LIST, PIM.READ_WRITE);
 }
 catch (SecurityException ex)
 {
 ex.printStackTrace();
 }
 catch (PIMException ex) {
 ex.printStackTrace ();
 } finally {
 if (eventList != null) {
 try {
 eventList.close();
 } catch (PIMException ex) {
 ex.printStackTrace();
 }
 }
 }

API Guide – v 0.9 Page 12 of 26

API Guide

 }
…
If the specified list type is not supported, call to PIM.openList() throws a PIMException.
If the MIDlet does not have permission to use the PIM API, a java.lang.SecurityException
is thrown, which means that we cannot determine if the list type is supported, since
access to the API was denied. Typically all three types of databases will be found on a
handset, and that multiple lists may exist for each list type. For example, some handsets
support various Event lists, for meetings, reminders, calls, memos and birthdays.

PIM API for Java ME – Permissions

To open the PIM list in read or write mode, PIM read or write permission is required or
both are to be required. Accessing the PIM resources without the proper permission will
result the java.lang.SecurityException being thrown.

The following code snippet shows how to request EventList read and write permission in
the JAD file.

MIDlet‐Permissions: javax.microedition.pim.EventList.read,
 javax.microedition.pim.EventList.write

Testing for Supported Fields

Not all PIM implementations support all the fields or attributes defined in the PIM API
specification. Before using a field or an attribute, you should test if it is supported,
otherwise you will get an UnsupportedFieldException or an IllegalArgumentException.

To test if a particular field is supported, call method PIMList.isSupportedField(int fieldID)

To test if a particular STRING_ARRAY field is supported, call method

PIMList.isSupportedArrayElement(int stringArrayFieldID, int arrayElement)

To test if a particular attribute for a particular field is supported, call method

PIMList.isSupportedAttribute(int fieldID, int attributeID)

To test if a particular RepeatRule field is supported for a specific recurring frequency, call
method

EventList.getSupportedRepeatRuleFields(int frequency)
The following code snippet shows how to test whether a field is supported or not.

 …
 if (eventList.isSupportedField(Event.LOCATION))

API Guide – v 0.9 Page 13 of 26

API Guide

 form.append(ʺField is supportedʺ);
 else
 form.append(ʺField not supportedʺ);
 …

The following code snippet shows how to add new contact to the address book using
explicit field access that handles optionally supported fields by use of a try catch block
with UnsupportedFieldException and PIMException. In this case, the setting of the whole
Contact is rejected if any of the fields are not supported in the particular list
implementation.

import javax.microedition.midlet.MIDlet;
import javax.microedition.midlet.MIDletStateChangeException;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Form;
import javax.microedition.lcdui.TextField;
import javax.microedition.pim.PIM;
import javax.microedition.pim.ContactList;
import javax.microedition.pim.Contact;
import javax.microedition.pim.PIMException;
import javax.microedition.lcdui.Alert;
import javax.microedition.lcdui.AlertType;
import javax.microedition.pim.PIMItem;
import java.lang.Runnable;
import java.lang.Thread;
import javax.microedition.pim.UnsupportedFieldException;

public class MainMidlet extends MIDlet implements CommandListener {

 private Display display = null;
 private final Command cmd_Exit = new Command(ʺExitʺ, Command.EXIT, 1);
 private final Command cmd_Commit = new Command(ʺCommitʺ,
 Command.SCREEN, 2);
 private Form form = null;
 private ContactList contactList = null;
 private Contact contact = null;
 private String field_Name[] = null;
 private String field_Addr[] = null;
 private PIM pim = null;
 private TextField name, familyName, country, locality, postalCode, street,
 telephone, email_id;

 public MainMidlet() {

API Guide – v 0.9 Page 14 of 26

API Guide

 init();
 }

 public void startApp() {

 display.setCurrent(form);

 if (contactList.isSupportedField(Contact.NAME) == true) {

 field_Name = new String[contactList.stringArraySize(Contact.NAME)];
 name = new TextField(ʺNAME:ʺ, null, 40,
 TextField.ANY);
 form.append(name);

 familyName = new TextField(ʺFAMILY NAME:ʺ, null, 40,
 TextField.ANY);
 form.append(familyName);

 }

 if (contactList.isSupportedField(Contact.ADDR)) {
 field_Addr = new String[contactList.stringArraySize(Contact.ADDR)];

 country = new TextField(ʺCOUNTRY:ʺ, null, 40,
 TextField.ANY);
 form.append(country);

 locality = new TextField(ʺLOCALITY:ʺ, null, 40,
 TextField.ANY);
 form.append(locality);

 postalCode = new TextField(ʺPOSTALCODE:ʺ, null,
 40, TextField.DECIMAL);
 form.append(postalCode);

 street = new TextField(ʺSTREET:ʺ, null, 40,
 TextField.ANY);
 form.append(street);

 telephone = new TextField(ʺTELEPHONE:ʺ, null, 40, TextField.DECIMAL);
 form.append(telephone);

 email_id = new TextField(ʺEMAIL‐IDʺ, null, 40, TextField.ANY);
 form.append(email_id);
 }

API Guide – v 0.9 Page 15 of 26

API Guide

 }

 public void pauseApp() {
 }

 public void destroyApp(boolean flag) {
 }

 public void init() {

 display = Display.getDisplay(this);
 form = new Form(ʺContact List Demo...ʺ);
 form.addCommand(cmd_Exit);
 form.addCommand(cmd_Commit);
 form.setCommandListener(this);
 try {
 pim = PIM.getInstance();
 contactList = (ContactList) pim.openPIMList(PIM.CONTACT_LIST, PIM.READ_WRITE,
ʺContactsʺ);
 } catch (PIMException ex) {
 ex.printStackTrace();
 }

 if (contactList != null) {
 contact = contactList.createContact();
 }
 }

 public void commandAction(Command cmd, Displayable dis) {

 if (cmd == cmd_Exit) {
 destroyApp(true);
 notifyDestroyed();
 } else {
 new Thread(new Runnable() {

 public void run() {
 try {
 if (name.getString() != null) {
 System.out.println();
 field_Name[Contact.NAME_GIVEN] = name.getString();
 }
 if (familyName.getString() != null) {
 field_Name[Contact.NAME_FAMILY] = familyName.getString();
 }
 if (country.getString() != null) {
 field_Addr[Contact.ADDR_COUNTRY] = country.getString();

API Guide – v 0.9 Page 16 of 26

API Guide

 }
 if (locality.getString() != null) {
 field_Addr[Contact.ADDR_LOCALITY] = locality.getString();
 }
 if (postalCode.getString() != null) {
 field_Addr[Contact.ADDR_POSTALCODE] = postalCode.getString();
 }
 if (street.getString() != null) {
 field_Addr[Contact.ADDR_STREET] = street.getString();
 }
 if (field_Name != null) {
 contact.addStringArray(Contact.NAME, PIMItem.ATTR_NONE,
 field_Name);
 }
 if (field_Addr != null) {
 contact.addStringArray(Contact.ADDR, Contact.ATTR_HOME,
 field_Addr);
 }
 if (telephone.getString() != null) {
 contact.addString(Contact.TEL, Contact.ATTR_HOME,
 telephone.getString());
 }
 if (email_id.getString() != null) {
 contact.addString(Contact.EMAIL, Contact.ATTR_HOME |
 Contact.ATTR_PREFERRED,
 email_id.getString());
 }
 contact.commit();
 Alert alert = new Alert(ʺinfo ʺ, ʺData added to PIMʺ, null,
 AlertType.CONFIRMATION);
 alert.setTimeout(2000);
 display.setCurrent(alert, form);
 } catch (UnsupportedFieldException e) {
 e.printStackTrace();
 } catch (PIMException ex) {
 ex.printStackTrace();
 } finally {
 try {
 contactList.close();
 } catch (PIMException ex) {
 ex.printStackTrace();
 }

 }
 }
 }).start();

API Guide – v 0.9 Page 17 of 26

API Guide

 }
 }
}

Discovering supported serial data formats

The PIM API provides a number of methods to import and export PIM data using
standard data exchange formats. To discover the supported data exchange formats, call
method supportedSerialFormats(PIMListType) passing argument as the type of PIM list to
import or export. The following code snippet shows how to discover the data exchange
formats for PIM events lists:

…

 private Display display=null;
 private PIM pim = null;
 private String supportedFormats[] = null;
 private static final Command cmd_Exit = new Command(ʺExitʺ,Command.EXIT,1);
 private Form form;

 public PIM2_Midlet() {

 display = Display.getDisplay(this);
 form = new Form(ʺPIM supported Formatʺ);
 pim = PIM.getInstance();
 if(pim != null)
 {
 //EVENT_LIST //CONTACT_LIST//
 supportedFormats = pim.supportedSerialFormats(PIM.CONTACT_LIST);
 }
 if(supportedFormats.length > 0)
 {
 for(int i=0;i<supportedFormats.length;i++)
 {
 form.append(ʺ\nʺ+supportedFormats[i]);
 }

 }
 form.addCommand(cmd_Exit);
 form.setCommandListener(this);
 display.setCurrent(form);

 }
…

API Guide – v 0.9 Page 18 of 26

API Guide

To discover the other types of PIM list data exchange formats, just replace the PIM list
type PIM.CONTACT_LIST above, for PIM.EVENT_LIST or PIM.TODO_LIST as
appropriate.

The returned serial format names follow the proper common naming convention that is
suitable for input to the toSerialFormat and fromSerialFormat import/export methods.
Supported data exchange formats include the vCard and vCalendar formats.

Following code snippet demonstrates how to export calendar events to a file in a
specified format.

import java.io.IOException;
import java.io.UnsupportedEncodingException;
import javax.microedition.midlet.MIDlet;
import javax.microedition.midlet.MIDletStateChangeException;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Command;
import java.lang.Runnable;
import java.lang.Thread;
import javax.microedition.lcdui.List;
import java.util.Vector;
import javax.microedition.pim.PIM;
import javax.microedition.pim.EventList;
import javax.microedition.pim.Event;
import javax.microedition.pim.PIMException;
import javax.microedition.lcdui.Alert;
import javax.microedition.lcdui.AlertType;
import java.util.Enumeration;
import javax.microedition.pim.PIMItem;
import javax.microedition.io.file.FileConnection;
import javax.microedition.io.Connector;
import java.io.OutputStream;
import java.util.Date;
import javax.microedition.lcdui.DateField;
import javax.microedition.pim.PIMList;

public class PIMExportMidlet extends MIDlet implements CommandListener{

 private Display display=null;
 private static final Command cmd_Exit = new Command(ʺExitʺ,Command.EXIT,1);
 private static final Command cmd_Export = new
 Command(ʺExportEventʺ,Command.SCREEN,2);
 private List event_implicitList=null;

API Guide – v 0.9 Page 19 of 26

API Guide

 private Vector eventVector=null;
 private PIM pim=null;
 private EventList eventList=null;
 private final String FILE_PATH=ʺfile://localhost/root1/ʺ;
 private final String FILE=ʺexportEvent.txtʺ;
 private final String exportEncoding = ʺUTF‐8ʺ;
 private DateField startDateField;
 private DateField endDateField;

 public PIMExportMidlet()
 {
 if(System.getProperty(ʺmicroedition.pim.versionʺ)!=null)
 init();
 else
 exitMidlet();
 }

 public void startApp() {

 new Thread(new Runnable()
 {
 public void run()
 {
 try {
 pim = PIM.getInstance();
 eventList = (EventList)
 pim.openPIMList(PIM.EVENT_LIST,PIM.READ_WRITE);
 if(eventList==null)
 {
 alertBox(ʺEvent List is not supportedʺ);
 }
 addEvent();
 if(eventList.isSupportedField(Event.SUMMARY))
 {
 Enumeration e = eventList.items();
 while(e.hasMoreElements())
 {
 Event event =(Event)e.nextElement();
 eventVector.addElement(event);
 String field_String =
 event.getString(Event.SUMMARY,PIMItem.ATTR_NONE);
 event_implicitList.append(field_String,null);
 }
 eventList.close();
 display.setCurrent(event_implicitList);
 }
 else

API Guide – v 0.9 Page 20 of 26

API Guide

 {
 alertBox(ʺField SUMMARY not supportedʺ);
 }
 } catch (PIMException ex) {
 ex.printStackTrace();
 }
 }
 }
).start();
 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 }
 private void init()
 {
 display = Display.getDisplay(this);
 eventVector = new Vector();
 event_implicitList = new List(ʺEvent List...ʺ,List.IMPLICIT);
 event_implicitList.addCommand(cmd_Exit);
 event_implicitList.addCommand(cmd_Export);
 event_implicitList.setCommandListener(this);
 }
 private void alertBox(String data)
 {
 Alert alert = new Alert(ʺInformationʺ,data,null,
 AlertType.INFO);
 alert.setTimeout(Alert.FOREVER);
 alert.addCommand(cmd_Exit);
 alert.setCommandListener(this);
 display.setCurrent(alert);
 }
 private void addEvent()
 {

 Event event = eventList.createEvent();
 if(eventList.isSupportedField(Event.SUMMARY) == true) {
 String summary = ʺExport Eventʺ;
 event.addString(Event.SUMMARY, PIMItem.ATTR_NONE, summary);
 }
 if(eventList.isSupportedField(Event.START) == true) {
 startDateField = new DateField(ʺStart dateʺ,DateField.DATE_TIME);
 startDateField.setDate(new Date());
 long startDate = startDateField.getDate().getTime();
 event.addDate(Event.START, PIMItem.ATTR_NONE, startDate);

API Guide – v 0.9 Page 21 of 26

API Guide

 }
 if(eventList.isSupportedField(Event.END) == true) {
 endDateField = new DateField(ʺEnd dateʺ, DateField.DATE_TIME);
 endDateField.setDate(new Date());
 long endDate = endDateField.getDate().getTime();
 event.addDate(Event.END, PIMItem.ATTR_NONE, endDate);
 }
 try {
 event.commit();
 } catch (PIMException ex) {
 ex.printStackTrace();
 }

 }
 private void exportPIMEvent()
 {

 if(System.getProperty(ʺmicroedition.io.file.FileConnection.versionʺ) == null)
 {
 alertBox(ʺFile Connection is not supportedʺ);
 }
 final String supported_format[] =
 pim.supportedSerialFormats(PIM.EVENT_LIST);
 if(supported_format.length>0)
 {
 int eventIndex = event_implicitList.getSelectedIndex();
 final Event event = (Event)eventVector.elementAt(eventIndex);
 new Thread(new Runnable(){
 public void run()
 {
 FileConnection fileConn=null;
 OutputStream outPut=null;
 try {
 fileConn = (FileConnection)
 Connector.open(FILE_PATH+FILE,Connector.READ_WRITE);
 if(!fileConn.exists())
 fileConn.create();
 outPut = fileConn.openOutputStream();
 pim.toSerialFormat(event, outPut, exportEncoding,
 supported_format[0]);
 } catch (PIMException ex) {
 ex.printStackTrace();
 } catch (UnsupportedEncodingException ex) {
 ex.printStackTrace();
 }catch (IOException ex) {
 ex.printStackTrace();
 }

API Guide – v 0.9 Page 22 of 26

API Guide

 finally{
 try {

 outPut.close();
 fileConn.close();
 alertBox(ʺData successfully exported to file...ʺ);
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
 }
 }).start();

 }
 }
 private void exitMidlet()
 {
 destroyApp(true);
 notifyDestroyed();
 }
 public void commandAction(Command cmd,Displayable dis)
 {
 if(cmd == cmd_Exit)
 exitMidlet();
 else
 {
 exportPIMEvent();
 }

 }
}

Following code snippet demonstrates how to import Contact:

import java.io.IOException;
import javax.microedition.midlet.MIDlet;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.List;
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.Alert;

import javax.microedition.pim.PIM;
import javax.microedition.pim.PIMItem;
import javax.microedition.pim.ContactList;
import javax.microedition.pim.Contact;

API Guide – v 0.9 Page 23 of 26

API Guide

import javax.microedition.pim.PIMException;

import javax.microedition.io.Connector;
import javax.microedition.io.file.FileConnection;

import java.util.Enumeration;
import java.io.InputStream;

public class PIMImportMidlet extends MIDlet implements CommandListener {

 private Display display;
 private List importContactList;
 private final Command cmd_Exit= new Command(ʺExitʺ,Command.EXIT,1) ;
 private final Command cmd_Import= new Command(ʺImport contactʺ,
 Command.SCREEN,2);
 private final String importEncoding = ʺUTF‐8ʺ;
 private final String FILE_PATH = ʺfile://localhost/root1/ʺ;
 private final String FILE = ʺ5.vcfʺ;
 private FileConnection fileConn=null;
 private InputStream inPutStream=null;

 public PIMImportMidlet() {
 if(System.getProperty(ʺmicroedition.pim.versionʺ)==null) {
 exitMIDlet();
 }
 init();
 }

 private void init() {

 display = Display.getDisplay(this);
 importContactList = new List(ʺcontactsʺ, List.IMPLICIT);
 importContactList.addCommand(cmd_Import);
 importContactList.addCommand(cmd_Exit);
 importContactList.setCommandListener(this);
 addContactsToListCtrl();
 }

 private void addContactsToListCtrl() {
 try {

 ContactList contactList = (ContactList)PIM.getInstance().openPIMList(
 PIM.CONTACT_LIST, PIM.READ_WRITE);

 if(contactList.isSupportedField(Contact.NAME) == false) {
 showMsg(ʺInfoʺ, ʺContact.Name not supportedʺ);
 }

API Guide – v 0.9 Page 24 of 26

API Guide

 if(contactList.isSupportedField(Contact.ADDR) == false) {

 showMsg(ʺInfoʺ, ʺContact.ADDR not supportedʺ);
 }
 importContactList.deleteAll();
 Enumeration contacts = contactList.items();
 while(contacts.hasMoreElements() == true) {
 Contact contact = (Contact)contacts.nextElement();
 String[] name = contact.getStringArray(Contact.NAME,
 PIMItem.ATTR_NONE);
 String
 address[]=contact.getStringArray(Contact.ADDR,PIMItem.ATTR_NONE);
 String family = name[Contact.NAME_FAMILY];
 String nameGiven = name[Contact.NAME_GIVEN];
 String country = address[Contact.ADDR_COUNTRY];
 String locality = address[Contact.ADDR_LOCALITY];
 String postalCode = address[Contact.ADDR_POSTALCODE];
 String street = address[Contact.ADDR_STREET];
 importContactList.append(family, null);
 importContactList.append(nameGiven, null);
 importContactList.append(country, null);
 importContactList.append(locality, null);
 importContactList.append(postalCode, null);
 importContactList.append(street, null);

 }
 contactList.close();

 } catch(PIMException e) {
 e.printStackTrace();
 } catch(SecurityException e) {
 e.printStackTrace();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }

 private boolean importContact() {

 if(System.getProperty(ʺmicroedition.io.file.FileConnection.versionʺ)!=null)
 return false;
 try {
 fileConn = (FileConnection)Connector.open(FILE_PATH+FILE,
 Connector.READ_WRITE);

 if(fileConn.exists() == false) {
 throw new Exception(ʺFile for importing was not found.ʺ);

API Guide – v 0.9 Page 25 of 26

API Guide

 }

 inPutStream = fileConn.openInputStream();
 PIMItem[] items = PIM.getInstance().fromSerialFormat(inPutStream,importEncoding);

 if(items.length > 0) {
 ContactList contactList = (ContactList) PIM.getInstance().openPIMList(
 PIM.CONTACT_LIST, PIM.READ_WRITE);
 Contact newcontact = contactList.importContact((Contact)items[0]);
 newcontact.commit();
 contactList.close();
 }

 showMsg(ʺInfoʺ, ʺContact was imported from file.ʺ);

 } catch(Exception e) {
 showMsg(ʺErrorʺ, e.getMessage());
 return false;
 }
 finally{
 try {
 inPutStream.close();
 fileConn.close();
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }
 return true;
 }

 private void showMsg(String title, String message) {
 Alert alert = new Alert(title);
 alert.setString(message);
 alert.setTimeout(Alert.FOREVER);
 display.setCurrent(alert);
 }

 public void startApp() {
 display.setCurrent(importContactList);
 }

 public void pauseApp() {

 }

 public void destroyApp(boolean unconditional) {

API Guide – v 0.9 Page 26 of 26

API Guide

 }

 private void exitMIDlet() {
 notifyDestroyed();
 }

 public void commandAction(Command command, Displayable displayable) {

 if(command == cmd_Import) {
 if(importContact()== true) {
 new Thread(new Runnable(){
 public void run()
 {
 addContactsToListCtrl();
 }
 }).start();

 }
 }
 else if(command == cmd_Exit) {
 exitMIDlet();
 }
 }
}

	JSR 75 - PIM
	Scope
	References:
	Abbreviations:

