[image: image1.jpg]aSI\MSUNG

mobile innovakor

[image: image12.jpg]aSI\MSUNG

mobile innovakor

Java ME Permissions

Version 0.9, Draft

[image: image13.jpg]¢Q SNAMSUNG

INFORMATION GUIDE
COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions, use or disclosure of this material, or any part thereof, is strictly prohibited and is a violation under the Copyright Law Samsung Electronics reserves the right to make changes in specifications at any time and without notice. The information furnished by Samsung Electronics in this material is believed to be accurate and reliable, but is not warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of Sun Microsystems.

All other company and product names may be trademarks of the respective companies with which they are associated.

About This Document
This document gives description of the security features in MIDP platform and various permissions associated with various APIs.

Scope:
This article assumes user to be familiar with Java programming and the basics of MIDP programming.

Document History:

	Date
	Version
	Comment

	05/02/09
	0.9
	Draft

References:
1. Understanding MIDP 2.0 is Security Architecture:
http://developers.sun.com/mobility/midp/articles/permissions/
Abbreviations:

	JRE
	Java Runtime Environment

	JTWI
	Java Technology for Wireless Information

	API
	Application Programming Interface

	VM
	Virtual Machine

	CDC
	Connected Device Configuration

	CLDC
	Connection Limited Device Configuration

	MIDP
	 Mobile Information Device Profile

	JSR
	Java Specification Request

	WMA
	Wireless Messaging API

	MMAPI
	Mobile Media API

Table of Contents
4Introduction

5Overview

5Security in MIDP

5Protection Domain

6Allowed permissions

6User permissions

7Blanket

7Session

7Oneshot

7Requesting MIDlet-permissions

8Adding permissions in MIDlet

12Detecting Permissions in MIDlet

Table of Figures
6Figure 1: Permission Prompt

7Figure 2: Security Exception

8Figure 3: Samsung SDK window

9Figure 4: Settings dialog

10Figure 5: Permissions

11Figure 6: API selection dialog box

12Figure 7: Permissions dialog box

List of Tables
13Table 1: Permission Table

Introduction
MIDP has always been a good platform for mobile users and the main feature of MIDP is its focus on security. As more numbers of JSRs are being introduced every year, Java ME applications are offering developers greater access to various data and services without compromising on the MIDP security system.

The security feature in MIDP governs how data and services are being accessed. Security to the Java ME Applications is achieved by providing permissions to protected APIs or functions.

Providing greater access to data and services on a device requires a level of trust to be established between the application, the device, and the user.

Overview
Permissions are named similar to Java package names. These are used to protect APIs or functions that are sensitive and require authorization.

Permissions names are case sensitive. All of the permissions for an API must use the same name as that of the API. If the permission is for a function of a specific class in the package then the permission MUST include the package and class name.

For example: MIDlet that needs to make a socket connection would need the permission of javax.microedition.io.Connector.socket.

Security in MIDP
In MIDP 1.0, security is mostly achieved by removing the ability to perform sensitive operations.

MIDP 2.0 comes with enhanced security features that open up more capabilities of devices for the developers without compromising security.

Security implementation checks whether a MIDlet Suite has the necessary permission before invoking the protected APIs or functions. MIDP 2.0 accomplishes this using protection domain.

Protection Domain
A collection of Permissions, which can be granted to a MIDlet suite is called protection domain.

Trusted MIDlet suite contains the permissions that authorize access to protected APIs or functions. A Signed MIDlet Suite is bound to protection domain and treats MIDlet suite as Trusted.

Untrusted MIDlet suites execute in the restricted environment with security constraints. The access to protected APIs or functions either is not allowed or is allowed with explicit user permission. This is because origin and authencity of the MIDlet suite cannot be determined and guaranteed.

A protection domain consists of:

· Allowed Permissions

· User Permissions

Allowed permissions:
Allowed permissions is a set of permissions that should be allowed (granted to contained MIDlet suites). These permissions allow access to a given protected API or function. Allowed permissions do not require any user interaction, so user is not prompted for granting access to the API or functions.

User permissions:
User permissions is a set of permissions that the user may need to authorize. These permissions prompt the user for granting access to protected APIs or functions. Granting access to some protected APIs or functions may lead to air time charges. For example: Http Connection, Wireless Messaging API.

Figure 1 shows the permission prompt shown to the user and the airtime charges indication.

[image: image2.jpg]T —

etpto ipdemo.com using itime
s may resu i arges.

e OKto e sitme?

Figure 1: Permission Prompt
Figure 2 shows the security exception thrown to the user when permission is denied. Only on user confirmation, the access to the API or function is given; otherwise, java.lang.SecurityException is thrown on denying the permission.

[image: image3.jpg]T —
A —

Applation o uthorzed o occess e
resticted AP1

Figure 2: Security Exception
Following are the various user interaction modes defined to allow or deny permissions. These user permissions vary as per the security policy.

Blanket

Blanket is valid till the MIDlets remain installed on the device or user changes the permission. In this mode, the user permission is valid for every invocation of an API or function.

Session

In this mode, user permission is valid till the MIDlet suite terminates. User is prompted on or before the first invocation of the API or function, which is protected. The permission is prompted once for protected API invocation or function. The process is repeated again when the MIDlet suite starts execution.

Oneshot

In this mode, the user is prompted for permission on each invocation of the protected API or function. The user permission is taken each time the MIDlet suite invokes protected API or function.

Requesting MIDlet-permissions
MIDlet suite may request permissions to access protected APIs or functions. Requesting MIDlet permissions is achieved by declaring permission request in MIDlet application descriptor file. The attributes are MIDlet-Permissions or MIDlet-Permissions-Opt.

If the permissions are requested using MIDlet-Permissions, then MIDlet suite installation might be aborted, if the MIDlet cannot gain access to the requested API.

If the permissions are requested using MIDlet-Permissions-Opt, then MIDlet suite installation can be continued, even if the MIDlet is unable to gain access to the requested API.

Multiple permissions can be specified and are separated by commas.

MIDlet-Permissions: javax.microedition.io.Connector.http, javax.microedition.io.PushRegistry

MIDlet-Permissions-Opt: javax.microedition.io.Connector.https

Adding permissions in MIDlet
Following steps shows how to add permissions to the Midlet.

1. Open Samsung SDK.

2. Open Midlet Project.

3. Click on the Settings Menu from the Samsung SDK menu bar as shown in Figure 3.

[image: image4.jpg]

Figure 3: Samsung SDK window
4. Settings dialog appears as shown in Figure 4.

[image: image5.jpg]‘Selected Device: SGH.82700

s J—
[cp—

Figure 4: Settings dialog
5. Click on the Permissions Option. It will open up Permissions dialog as shown in Figure 5.

[image: image6.jpg]

Figure 5: Permissions
6. Click on the "MIDlet-Permissions" [image: image7.png]

 button to add permissions. These permissions would be set to the MIDlet-Permissions attribute in JAD file. On clicking [image: image8.png]

 button, API Selection Dialog appears as shown in Figure 6.

[image: image9.jpg]Permission APl selection

m javax
88 microedition
mo
88 Connector

datagram
datagramreceiver
sacket
serversacket

Figure 6: API selection dialog box
For example: For Http Connection, permission for javax.microedition.io.Connector.http can be requested.
7. Click on the "MIDlet-Permissions-Opt" [image: image10.png]

 button to add optional permissions. These permissions would be set to the MIDlet-Permissions-Opt attribute in JAD file. The procedure to add permission is same as the one shown in step 6.
For example: javax.microedition.io.Connector.https connection can be requested.

8. On adding permissions the permissions dialog box looks as shown in Figure 7

[image: image11.jpg]si=iai<luials{Blal

&) Coma))|

Figure 7: Permissions dialog box
The requested permissions are reflected in the JAD file as:

MIDlet-Permissions: javax.microedition.io.Connector.http

MIDlet-Permissions-Opt: javax.microedition.io.Connector.https

Detecting Permissions in MIDlet
The MIDlet class in MIDP 2.0 includes a method

int javax.microedition.midlet.MIDlet.checkPermission(String permissions)
That allows passing the permission name as a parameter. An integer value is returned indicating the status of the permission.

Where status can be:

0: if the permission is denied.

1: if the permission is allowed.

-1: if the permission status is unknown.

Following table shows some API list, which requires permission for invocation or its protected function.

Table 1: Permission Table
	Network Generic Connection Framework
	javax.microedition.io.Connector.http
javax.microedition.io.Connector.https
javax.microedition.io.Connector.cbs
javax.microedition.io.Connector.datagram
javax.microedition.io.Connector.datagramreceiver
javax.microedition.io.Connector.socket
javax.microedition.io.Connector.ssl
javax.microedition.io.Connector.serversocket

	Messaging

JSR 120
	javax.microedition.io.Connector.sms
javax.microedition.io.Connector.mms
javax.wireless.messaging.cbs.receive
javax.wireless.messaging.mms.receive
javax.wireless.messaging.mms.send
javax.wireless.messaging.sms.receive
javax.wireless.messaging.sms.send

	Auto invocation MIDP
	javax.microedition.io.PushRegistry

	Bluetooth JSR 82
	javax.microedition.io.Connector.comm
javax.microedition.io.Connector.bluetooth.client
javax.microedition.io.Connector.bluetooth.server
javax.microedition.io.Connector.obex.client
javax.microedition.io.Connector.obex.client.tcp
javax.microedition.io.Connector.obex.server
javax.microedition.io.Connector.obex.server.tcp

	File read , write data access JSR 75
	javax.microedition.io.Connector.file.read
javax.microedition.pim.ContactList.read
javax.microedition.pim.EventList.read
javax.microedition.pim.ToDoList.read

javax.microedition.io.Connector.file.write
javax.microedition.pim.ContactList.write
javax.microedition.pim.EventList.write
javax.microedition.pim.ToDoList.write

	Location JSR 179
	javax.microedition.location.Location
javax.microedition.location.Orientation
javax.microedition.location.ProximityListener

javax.microedition.location.LandmarkStore.category
javax.microedition.location.LandmarkStore.management
javax.microedition.location.LandmarkStore.read
javax.microedition.location.LandmarkStore.write

 Information Guide – v 0.9

Page 14 of 14

