[image: image1.jpg]aSI\MSUNG

mobile innovakor

[image: image20.jpg]JSI\MSUNG

mobile innovakar

[image: image21.jpg]¢Q SNAMSUNG

Location API

 Version 0.9, Draft

[image: image22.png]? SAMSUNG

mabile innovakar

JSR 179

COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions, use or disclosure of this material, or any part thereof, is strictly prohibited and is a violation under the Copyright Law. Samsung Electronics reserves the right to make changes in specifications at any time and without notice. The information furnished by Samsung Electronics in this material is believed to be accurate and reliable, but is not warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of Sun Microsystems.

All other company and product names may be trademarks of the respective companies with which they are associated.

About This Document

This document describes the JSR 179 Location API followed by sample code.

Scope
This document is intended for MIDP developers who want to develop mobile Java applications. This document introduces you to the Location API for Java ME(JSR 179) API that can be used for developing location-based services. It assumes good knowledge of java programming language.
To know more about Java ME basics and Java programming language, refer to the Knowledge Base under Samsung Mobile Innovator (SMI).
 http://innovator.samsungmobile.com/platform.main.do?platformId=3
Document History:
	Date
	Version
	Comment

	22/06/09
	0.9
	Draft

References:

1. Location API JSR : http://jcp.org/en/jsr/detail?id=179

2.
Location API Article : http://developers.sun.com/mobility/apis/articles/location/

Abbreviations:
	JSR
	Java Specification Request

	API
	Application Programming Interface

	CLDC
	Connected Limited Device Configuration

	BTS
	Base Transceiver Station

	GPS
	Global Positioning System

Table of Contents
5Introduction

5Expressing Location

5Device Location

6Overview

6API Description

7Location

7Obtaining a Location:

11Landmark

12Adding Landmark into LandmarkStore

13Retrieving Landmark from LandmarkStore

13Deleting Landmark from LandmarkStore

14Orientation

15Detecting Location API presence

15Security & Permissions

16Location Example

16Class: LocationMidlet.java

20Landmark Example

20Class: LandmarkMidlet.java

25Orientation Example

25Class: OrientationMidlet.java

List of Tables

6Table 1: Class Information

7Table 2: Interface Information

7Table 3: Exception Information

15Table 4: Permissions

Introduction

Location API is an Optional Package javax.microedition.location that provides access to location based information. Location API provides a standard for developers to write mobile location-based applications. Location API gives information about the present physical location of the device.
It can be used with many Java ME profiles. The minimum platform is CLDC and the targets are low memory devices. This API implementation footprint is:

· ROM budget max. 20 KB

· RAM budget max. 2 KB
Expressing Location:

Locations can be expressed in spatial terms or text descriptions.

A spatial location is expressed in the form of latitude-longitude-altitude coordinate system. Latitude is expressed as 0-90 degrees north or south of the equator and longitude as 0-180 degrees east or west of the prime meridian, which passes through Greenwich, England. Altitude is expressed in meters above sea level. A text description is usually expressed as a street address, including city, postal code, and so on.

Device Location:

Applications can use the following methods to determine the device location:

Cell ID (Using the mobile phone network)

Cell ID method can be used to determine device location by identifying the Base Transceiver Station (BTS), that the device is communicating with and the location of that BTS. The accuracy is less since the accuracy of this method depends on the size of the cell.

GPS (Using satellites)

The Global Positioning System (GPS) is potentially the most accurate method but it has some drawbacks. The extra hardware can be costly, consumes battery while in use, and requires some warm-up after a cold start to get an initial fix on visible satellites. It also suffers from "canyon effects" in cities, where satellite visibility is intermittent.

Bluetooth (Using short-range positioning)

In relatively small areas, such as a single building, a local area network can provide locations along with other services. For example, appropriately equipped devices can use Bluetooth for short-range positioning.
Overview

The features of the Location API are:

· Location -To obtain information about the device location.

· Landmarks - To create, edit, store, and retrieve landmarks.

· Orientation - To obtain the orientation of a device.

Location API package javax.microedition.location contains the basic classes and interface to access location information.

API Description:
Package contains 9 classes, 2 interfaces and 2 exceptions. The following table shows the classes, interface and exceptions.
Table 1: Class Information

	Class
	Description

	AddressInfo
	AddressInfo class holds textual address information about a location.

	Coordinates
	Coordinates class represents coordinates as latitude-longitude-altitude values.

	Criteria
	The criterion used for the selection of the location provider is defined by the values in this class.

	Landmark
	The Landmark class represents a landmark, i.e. a known location with a name.

	LandmarkStore
	The LandmarkStore class provides methods to store, delete and retrieve landmarks from a persistent landmark store

	Location
	The Location class represents the standard set of basic location information.

	LocationProvider
	This is the starting point for applications using this API and represents a source of the location information.

	Orientation
	The Orientation class represents the physical orientation of the terminal

	QualifiedCoordinates
	The QualifiedCoordinates class represents coordinates as latitude-longitude-altitude values that are associated with an accurate value

Table 2: Interface Information

	Interface
	Description

	LocationListener
	The LocationListener represents a listener that receives events associated with a particular LocationProvider.

	ProximityListener
	This interface represents a listener to events associated with detecting proximity to some registered coordinates

Table 3: Exception Information

	Exception
	Description

	LandmarkException
	The LandmarkException is thrown when an error related to handling landmarks has occurred.

	LocationException
	The LocationException is thrown when a location API specific error has occurred.

Location
Location feature provides location and related information about the device. Location and LocationProvider are the classes, which provide methods to obtain Location information.
The Location class abstracts the location information. Information includes timestamp, coordinates, accuracy, speed, course, information and optional textual address information.
Obtaining a Location

Following are the steps to obtain device Location:
1. Specify Criteria

2. Set Criteria to LocationProvider

3. Get LocationProvider instance as per the Criteria specified
4. Get Location object from LocationProvider
5. Get Coordinates from Location
To obtain Location information, application needs to obtain LocationProvider instance by specifying the criteria. LocationProvider is the starting point of the application to get Location Information. It represents a Location module generating Locations.

The application can specify criteria for the selection of LocationProvider. It is up to the application to determine and specify criteria for selecting the location method.

Criteria is used by LocationProvider factory method

static LocationProvider getInstance(Criteria criteria)

to get LocationProvider instance that best fits the given criteria.

Using LocationProvider, application can now get Location object by:

1) Using getLocation(int timeout) method to get single Location Object.

2) Registering listener to get Location at periodic intervals.

Location object contains location information and coordinates. Location information includes accuracy, speed, course, and information about the positioning method used for the location, plus an optional textual address.

Coordinates are represented by either of two classes:

· Coordinates object represents a point's latitude and longitude in degrees, and altitude in meters.

· QualifiedCoordinates object contains latitude, longitude, altitude and an indication of their accuracy, represented as the radius of an area.

Textual address of the location is represented by AddressInfo object. AddressInfo contains the textual information about the location. It has getter and setter methods for setting and retrieving data based on the constant fields. Example: Country, Country Code, Phone number, State, Street etc.
1) Using getLocation() method
The following code snippet shows how to obtain location object using getLocation() method:
…

/* Set criteria for selecting a location provider:

 accurate to 500 meters horizontally*/
Criteria cr= new Criteria();

cr.setHorizontalAccuracy(500);

/* Get an instance of the provider*/
LocationProvider lp= LocationProvider.getInstance(cr);

/* Request the location, setting a one-minute timeout*/
Location l = lp.getLocation(60);

Coordinates c = l.getQualifiedCoordinates();

if(c != null) {

 /* Use coordinate information*/
 double lat = c.getLatitude();

 double lon = c.getLongitude();

}

…

2) Using Listener
LocationProvider class has two listener methods to register a listener to get periodically updated Location objects via
1. LocationListener

setLocationListener(LocationListener listener, int interval, int timeout, int maxAge)
2. ProximityListener

addProximityListener(ProximityListener listener, Coordinates coordinates, float proximityRadius)

LocationListener
LocationListener gives regular position updates at defined interval.

LocationListener has two methods
locationUpdated(LocationProvider provider,Location location)

locationupdated() method gives location updates at regular intervals.
providerStateChanged(LocationProvider provider,int newState)

providerStateChanged() gives information of LocationProvider state i.e. AVAILABLE, OUT_OF_SERVICE or TEMPORARILY_UNAVAILABLE

Following code snippet shows the implementation of the above methods.
…

public void locationUpdated(LocationProvider provider, Location location){

 if (location != null && location.isValid()) {

 QualifiedCoordinates qc = location.getQualifiedCoordinates();

 form.append("Lat: "+qc.getLatitude()+"Lon: "+qc.getLongitude()+ "Alt: " + qc.getAltitude()”);

 }

 }

public void providerStateChanged(LocationProvider provider,int newState){

form.append(“newState ”+newState);
}

…

ProximityListener
Application can also add ProximityListener that notifies when proximity to registered coordinates is detected. The listener is called when the terminal enters the proximity of registered coordinates.

ProximityListener has two methods:
proximityEvent(Coordinates coordinates,Location location)

proximityEvent is called when user comes in the proximity of a particular location.

monitoringStateChanged(boolean isMonitoringActive)

monitoringStateChanged is called when the state of the proximity monitoring is changed. isMonitoringActive boolean indicates the new state of the proximity monitoring.
true - indicates that the proximity monitoring is active.

false - indicates that the proximity monitoring cannot be done currently.

Following code snippet shows the implementation of the above methods:
…

try {

Criteria cr = new Criteria();

provider = LocationProvider.getInstance(cr);

/* coordinates around which proximity has to be found*/

Coordinates proximityCoordinates = new Coordinates(34.359766723, 60.495850625, 410);

/*Listener registration for above coordinates for proximity of 2000 meters.*/

LocationProvider.addProximityListener(this, proximityCoordinates, 2000.0f);

} catch (LocationException e) {

e.printStackTrace();

}

/*ProxmityListener methods*/

public void proximityEvent(Coordinates arg0, Location arg1) {

form.append("You are presently within 2000 meters radius from Location Lat: 34.359766723 Long: 60.495850625");

}

public void monitoringStateChanged(boolean isActive)

{

 if(isActive)

form.append(“Monitoring is Active”);
 else

form.append(“Monitoring is currently not Active”);
}

…

Landmark
Landmark is a physical location with a name that represents as a location to the end user. Location API allows user to create new landmark, add, store, retrieve, and delete landmarks. Landmark and LandmarkStore class provides this functionality.

Landmark class represents Landmark information. Landmark information includes name, description, address information and qualified coordinates. Address information is represented by AddressInfo object.

Landmark(String name, String description, QualifiedCoordinates coordinates, AddressInfo addressInfo)

Following code snippet shows how to create Landmark
...

AddressInfo textAddress = new AddressInfo();

textAddress.setField(AddressInfo.COUNTRY , "UK");

textAddress.setField(AddressInfo.CITY , "London");

Landmark landmark = new Landmark("My Restaurant”, ” My Restaurant best in the world", new QualifiedCoordinates(11.289496608768690, 34.59678880927362,460, 31.32, 45.000) , textAddress);

...

LandmarkStore is a shared persistent area to store, modify, and delete landmarks. Landmark information can be stored in this data store and can be used later by the application as and when required.

Landmark can also be categorized in LandmarkStore. The Landmark has a name and may be placed in a category or several categories. The category is intended to group landmarks that are of similar type to the end user, e.g. Restaurants, Museums, etc.

All Landmark store database must be shared between all Java ME Applications and may be shared with native applications.

Following code snippet shows creating LandmarkStore and LandmarkStore Category:
…

/*Check if the Landmark Store already exists*/

String allLandmarkStores[] = LandmarkStore.listLandmarkStores();

boolean isStoreExist=false;

for(int i=0; i< allLandmarkStores.length; i++) {

if(allLandmarkStores [i].equals("MyLandmarks")) {

isStoreExist = true;

}

}

/*Create a new Lanmark Store if the store does not exist*/

if(!isStoreExist){

LandmarkStore.createLandmarkStore("MyLandmarkStore");

}

myLmStore = LandmarkStore.getInstance("MyLandmarkStore");

/*Add category*/

myLmStore.addCategory("Restaurant");

...

Adding Landmark into LandmarkStore

LandmarkStore class provides addLandmark(Landmark landmark, String category) to add Landmark object into LandmarkStore. Category could be Restaurants, Home etc.

Following code snippet shows how to add Landmark into LandmarkStore:
…

Criteria cr = new Criteria();

/*Accuracy set to 100 Meters*/

cr.setHorizontalAccuracy(100);

/*Get LocationProvider*/

LocationProvider provider = LocationProvider.getInstance(cr);

/*180 secs time out*/

Location location = provider.getLocation(180);

QualifiedCoordinates c = location.getQualifiedCoordinates();

double latitude = c.getLatitude();

double longitude = c.getLongitude();

float altitude = c.getAltitude();

float hAccuracy = c.getHorizontalAccuracy();

float vAccuracy = c.getVerticalAccuracy();

/* Same Address Info for all landmarks. */
AddressInfo textAddress = new AddressInfo();

textAddress.setField(AddressInfo.COUNTRY , "MyCountry");

textAddress.setField(AddressInfo.STATE , "My State");

textAddress.setField(AddressInfo.CITY , "MyCity");

textAddress.setField(AddressInfo.STREET , "MyStreet");

Landmark landmark = new Landmark(name,description,new QualifiedCoordinates(latitude, longitude, altitude, hAccuracy, vAccuracy) ,textAddress);

…

Retrieving Landmark from LandmarkStore
Similarly, Landmark objects can be retrieved using getLandmarks(). The Landmark objects returned from the getLandmarks() guarantee that the application can read a consistent set of the landmark data valid at the time of obtaining the object instance, even if the landmark information in the store is modified subsequently by this or some other application. getLandmarks() returns an enumeration of all Landmarks.

…

try {

 Enumeration landmarkEnum = MyLandmarkStore.getLandmarks();

 while (landmarkEnum.hasMoreElements()) {

 Landmark myLandmark = (Landmark)landmarkEnum.nextElement();

 double lmLatitude = myLandmark.getQualifiedCoordinates().getLatitude();

 double lmLongitude =

 myLandmark.getQualifiedCoordinates().getLatitude();

 String landmarkName = myLandmark.getName();

 String lmCountry=

 landmark.getAddressInfo().getField(AddressInfo.COUNTRY);

 form.append(“landmarkName “+landmarkName + "Latitude: " + lmLatitude + " Longitude: " + lmLongitude + " Country: " +lmCountry);

}

}catch(Exception e){

form.append(“No Landmarks in MyLandmarkStore”);

}

…

Deleting Landmark from LandmarkStore

Landmark objects can be deleted from LandmarkStore database by using deleteLandmarkStore(String storeName).
 All landmarks and categories defined in this store are removed. Similarly, deleteLandmark (Landmark lm) deletes landmark from current LandmarkStore.
This method removes the landmark from all categories and deletes the information from this LandmarkStore.

…

try{

/*Check if the Landmark Store already exists*/

String allLandmarkStores[] = LandmarkStore.listLandmarkStores();

boolean isStoreExist=false;

for(int i=0; i< allLandmarkStores.length; i++) {

if(allLandmarkStores [i].equals("MyLandmarks")) {

isStoreExist = true;

}

}

if(isStoreExist)

LandmarkStore .deleteLandmarkStore(“MyLandmarks”);

}catch(Exception e)

{

form.append(“Exception at deleting Landmark”+e);

}

…

Orientation

This feature is useful for navigational purpose. Orientation class represents the physical orientation of the device (compass orientation). Application may be able to determine not only device location but also its orientation, if the device has a compass.

Orientation is described by azimuth to north (the horizontal pointing direction), pitch (the vertical elevation angle) and roll (the rotation of the terminal around its own longitudinal axis).

To get Orientation object use getOrientation() method. Following code snippet shows orientation

…

Orientation orientation = Orientation.getOrientation();

float azimuth = orientation.getCompassAzimuth();

float pitch = orientation.getPitch();

float roll = orientation.getRoll();

boolean isOrientationMagnetic = orientation.isOrientationMagnetic();

form.append(“azimuth ”+azimuth+” pitch ”+pitch+” roll ”+roll+” isOrientationMagnetic ”+ isOrientationMagnetic);

…

isOrientationMagnetic() returns a boolean value that indicates whether this Orientation is relative to the magnetic field of the Earth or relative to true north and gravity.
Detecting Location API presence

 To check whether the handset support Location API,

 System.getProperty("microedition.location.version").

can be used. If it is supported, the location version is returned else null will be returned.
Security & Permissions

Some methods in this API are defined to throw a SecurityException if the user does not have the permissions needed to perform the action.
Following table shows the permissions associated with Location API.
Table 4: Permissions
	Permissions name
	Methods protected by this Permission

	javax.microedition.location.Location
	LocationProvider.getLocation()

LocationProvider.setLocationListener()

	javax.microedition.location.Orientation
	Orientation.getOrientation()

	javax.microedition.location.ProximityListener
	LocationProvider.addProximityListener()

	javax.microedition.location.LandmarkStore.read
	LandmarkStore.getInstance()

LandmarkStore.listLandmarkStores()

	javax.microedition.location.LandmarkStore.write
	LandmarkStore.addLandmark()

LandmarkStore.deleteLandmark()

LandmarkStore.removeLandmarkFromCategory()

LandmarkStore.updateLandmark()

	javax.microedition.location.LandmarkStore.category

	LandmarkStore.addCategory(),

LandmarkStore.deleteCategory()

	javax.microedition.location.LandmarkStore.management

	LandmarkStore.createLandmarkStore(),

LandmarkStore.deleteLandmarkStore()

Location Example
This sample example shows how to use Location API to get location information.
Class: LocationMidlet.java

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.Form;

import javax.microedition.location.Criteria;

import javax.microedition.location.Location;

import javax.microedition.location.LocationException;

import javax.microedition.location.LocationProvider;

import javax.microedition.location.QualifiedCoordinates;

import javax.microedition.midlet.MIDlet;

public class LocationMidlet extends MIDlet implements CommandListener,Runnable{

 /* Define String Constants */

 private final String locate_String = "Locate";

 private final String exit_String = "Exit";

 private final String done_String = "Done";

 private final String locationForm_Title_String = "Location Demo";

 private final String locationInfo_String =
 "Press Locate Command to start Application Demo \n";

 private final String exitInfo_String = "Press Exit Command to exit Application \n";

 /*LocationMidlet Display */

 private Display display;

 /*LocationMidlet Commands*/

 private Command cmd_Locate, cmd_Exit, cmd_Done;

 /*LocationMidlet Form*/

 private Form locationForm;

 /** location provider */

 private LocationProvider locationProvider = null;

 private Location location;

 private QualifiedCoordinates coordinates;

 private Thread locationThread;

 /*LocationMidlet Constructor*/

 public LocationMidlet()

 {

 /*Intialize Commands*/

 cmd_Locate = new Command(locate_String, Command.OK,1);

 cmd_Done = new Command(done_String, Command.OK,1);

 cmd_Exit = new Command(exit_String, Command.EXIT,2);

 /*Create Form*/

 locationForm = new Form(locationForm_Title_String);

 /*Appending location and Exit Information*/

 locationForm.append(locationInfo_String);

 locationForm.append(exitInfo_String);

 /*Adding commands to Location Form*/

 locationForm.addCommand(cmd_Exit);

 locationForm.addCommand(cmd_Locate);

 locationForm.setCommandListener(this);

 /*Intialize display*/

 display = Display.getDisplay(this);

 /*Create LocationProvider Instance*/

 locationProvider = null;

 createLocationProvider();

 if(locationProvider == null)

 {

 displayError();

 }

 }

 public void startApp() {

 /*display Form*/

 display.setCurrent(locationForm);

 }

 public void pauseApp() {

 /*your code to handle interrupt*/

 }

 public void destroyApp(boolean unconditional) {

 /*your code before notifyDestroyed method*/

 notifyDestroyed();

 }

 private void exitMidlet()

 {

 destroyApp(true);

 }

 private void displayError()

 {

 locationForm.deleteAll();

 locationForm.append("Unable to create LocationProvider");

 locationForm.addCommand(cmd_Exit);

 }

 /*Initialize LocationProvider using Default Criteria*/

 private void createLocationProvider() {

 if (locationProvider == null) {

 /*Constructs a Criteria object. All the fields are set to the default values*/

 Criteria criteria = new Criteria();

 /* criteria Fields which you can set

 criteria.setCostAllowed(true); //default value

 criteria.setSpeedAndCourseRequired(true);

 criteria.setHorizontalAccuracy(500);

 criteria.setAltitudeRequired(true);

 criteria.setPreferredPowerConsumption(Criteria.POWER_USAGE_LOW);

 */

 try {

 locationProvider = LocationProvider.getInstance(criteria);

 } catch (LocationException le) {

 /*Unable to create Location Provider using this criteria*/

 le.printStackTrace();

 }

 }

 }

 private void createLocation()

 {

 try {

 // Get a location fix for 30 seconds timeout

 location = locationProvider.getLocation(30);

 } catch (LocationException ex) {

 ex.printStackTrace();

 } catch (InterruptedException ex) {

 ex.printStackTrace();

 }

 }

 private void getLocationResults()

 {

 coordinates = location.getQualifiedCoordinates();

 }

 private void displayLocationResults()

 {

 /*

 locationForm.append("Course"+loc.getCourse());

 locationForm.append("Speed"+loc.getSpeed());

 */

 locationForm.append("Altitude:"+coordinates.getAltitude() +"\n");

 locationForm.append("Latitude:"+coordinates.getLatitude() +"\n");

 locationForm.append("Longitude:"+coordinates.getLongitude() +"\n");

 }

 public void commandAction(Command cmd, Displayable disp) {

 if(cmd == cmd_Locate)

 {

 /*Deleting previous data displayed*/

 locationForm.deleteAll();

 /*Removing exit and locate command*/

 locationForm.removeCommand(cmd_Exit);

 locationForm.removeCommand(cmd_Locate);

 /*Adding done command*/

 locationForm.addCommand(cmd_Done);

 /*Create Thread to avoid deadlock*/

 locationThread = new Thread(this);

 locationThread.start();

 }else

 if(cmd == cmd_Exit)

 {

 exitMidlet();

 }else

 if(cmd == cmd_Done)

 {

 locationForm.deleteAll();

 /*Remove done command*/

 locationForm.removeCommand(cmd_Done);

 /*Adding commands to Location Form*/

 locationForm.addCommand(cmd_Exit);

 locationForm.addCommand(cmd_Locate);

 /*Appending location and Exit Information*/

 locationForm.append(locationInfo_String);

 locationForm.append(exitInfo_String);

 }

 }

 public void run() {

 /*Get Location*/

 createLocation();

 /*Get Location Results*/

 getLocationResults();

 /*Display Results*/

 displayLocationResults();

 }

}

Landmark Example
This example shows how to add, store, retrieve, delete landmark.

Class: LandmarkMidlet.java

import java.io.IOException;

import java.util.Enumeration;

import java.util.Vector;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.List;

import javax.microedition.location.AddressInfo;

import javax.microedition.location.Coordinates;

import javax.microedition.location.Landmark;

import javax.microedition.location.LandmarkException;

import javax.microedition.location.LandmarkStore;

import javax.microedition.location.QualifiedCoordinates;

import javax.microedition.midlet.MIDlet;

public class LandmarkMidlet extends MIDlet implements CommandListener, Runnable{

 private final String OFFICE_CATEGORY = "OFFICE";

 private LandmarkStore landmarkStore = null;

 private final int ADD_LANDMARK = 1;

 private final int SHOW_LANDMARK = ADD_LANDMARK + 1;

 private final int DELETE_LANDMARK = SHOW_LANDMARK + 1;

 private int landmarkState;

 private List landmarkList;

 private Command cmd_Exit;

 private Command cmd_showLandmark, cmd_deleteLandmark;

 private Command cmd_addLandmark;

 private Display display;

 private Thread landmarkThread;

 private Vector landmarkVector;

 public LandmarkMidlet()

 {

 landmarkList = new List("Landmark Demo", List.IMPLICIT);

 cmd_Exit = new Command("Exit", Command.EXIT, 1);

 /* cmd_addCategory = new Command("Add Category", Command.SCREEN, 1); */

 cmd_addLandmark = new Command("Add Landmark", Command.SCREEN, 1);

 /* cmd_showCategory = new Command("show Category", Command.SCREEN, 1); */

 cmd_showLandmark = new Command("show Landmark", Command.SCREEN, 1);

 cmd_deleteLandmark = new Command("delete Landmark", Command.SCREEN, 1);

 /* cmd_deleteCategory = new Command("delete Category", Command.SCREEN, 1);*/

 landmarkList.addCommand(cmd_Exit);

 landmarkList.addCommand(cmd_addLandmark);

 landmarkList.addCommand(cmd_showLandmark);

 landmarkList.addCommand(cmd_deleteLandmark);

 landmarkList.setCommandListener(this);

 landmarkVector = new Vector();

 display = Display.getDisplay(this);

 display.setCurrent(landmarkList);

 }

 public void startApp() {

 loadLandmarks();

 }

 public void pauseApp() {

 /*your code to handle interrupts*/

 }

 public void destroyApp(boolean unconditional) {

 /*your code before notifyDestroyed*/

 notifyDestroyed();

 }

 private void exitMidlet()

 {

 destroyApp(true);

 }

 private void loadLandmarks() {

 landmarkStore = LandmarkStore.getInstance(null);

 /*Added Office Category in LandmarkStore*/

 addLandmarkCategory();

 }

 private void addLandmarkCategory()

 {

 try {

 Enumeration c = landmarkStore.getCategories();

 boolean exists;

 for (exists = false; c.hasMoreElements() ;)

 {

 String category = (String)c.nextElement();

 if (category.equals(OFFICE_CATEGORY)) {

 exists = true;

 break;

 }

 }

 /*If Office Category doesn’t exists then add Office Category

 in LandmarkStore*/

 if(!exists)

 landmarkStore.addCategory(OFFICE_CATEGORY);

 } catch (IOException ex) {

 ex.printStackTrace();

 } catch (LandmarkException ex) {

 ex.printStackTrace();

 }

 }

 private void addLandmark()

 {

 /*Latitude range -90 to 90 degrees*/

 /*Longitude range -180 to 180 degrees*/

 QualifiedCoordinates officeCoordinates = new QualifiedCoordinates(85.0, 85.0, 100, 500, 500);

 AddressInfo officeAddressInfo = new AddressInfo();

 officeAddressInfo.setField(AddressInfo.STREET, "OfficeStreet");

 officeAddressInfo.setField(AddressInfo.CITY, "OfficeCity");

 officeAddressInfo.setField(AddressInfo.POSTAL_CODE, "123456");

 officeAddressInfo.setField(AddressInfo.PHONE_NUMBER, "1234567890");

 Landmark landmark1 = new Landmark("My Office", "Office Description", (QualifiedCoordinates) officeCoordinates, officeAddressInfo);

 try {

 /*Category needs to be present before adding Landmark

 * addLandmarkCategory() adds category

 */

 landmarkStore.addLandmark(landmark1, OFFICE_CATEGORY);

 /*Refresh List with newly added Landmark*/

 showLandmark();

 } catch (IOException ex) {

 /*Landmark could not be added to Office category*/

 ex.printStackTrace();

 }

 }
 private void showLandmark()

 {

 try {

 /*delete landmarks in list and vector*/
 landmarkVector.removeAllElements();

 landmarkList.deleteAll();

 Enumeration c = landmarkStore.getLandmarks();

 boolean exists;

 /*returns null if no landmark is present in landmarkStore Category*/

 for (exists = false; c!=null && c.hasMoreElements();) {

 Landmark landmark = (Landmark) c.nextElement ();

 landmarkVector.addElement(landmark);

 landmarkList.append(landmark.getName(), null);

 }

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

 private void deleteLandmark()

 {

 int landmarkIndex = landmarkList.getSelectedIndex();

 /*Check to avoid OutofBoundsException*/

 if(landmarkIndex>-1)

 {

 Landmark landmark = (Landmark)landmarkVector.elementAt(landmarkIndex);

 try {

 landmarkStore.deleteLandmark(landmark);

 } catch (IOException ex) {

 ex.printStackTrace();

 } catch (LandmarkException ex) {

 ex.printStackTrace();

 }

 /*Refresh List*/

 showLandmark();

 }

 }

 public void commandAction(Command cmd, Displayable disp) {

 if(cmd_Exit == cmd)

 {

 exitMidlet();

 }else

 if(cmd_addLandmark == cmd)

 {

 landmarkState = ADD_LANDMARK;

 landmarkThread = new Thread(this);

 landmarkThread.start();

 }else

 if(cmd_showLandmark == cmd)

 {

 showLandmark();

 }else

 if(cmd_deleteLandmark == cmd)

 {

 landmarkState = DELETE_LANDMARK;

 landmarkThread = new Thread(this);

 landmarkThread.start();

 }

 }

 public void run() {

 if(ADD_LANDMARK == landmarkState)

 addLandmark();

 else

 if(DELETE_LANDMARK == landmarkState)

 deleteLandmark();

 landmarkState = -1;

 }

}

Orientation Example

This example shows how to get Orientation.

Class: OrientationMidlet.java

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.location.Orientation;

public class OrientationMidlet extends MIDlet implements CommandListener {

 private Command exitCmd = new Command("Exit", Command.EXIT, 1);

 private Display display;

 private Form mainForm;

 public OrientationMidlet(){

 }

 protected void destroyApp(boolean unconditional){

 }

 protected void pauseApp(){

 }

 protected void startApp()throws MIDletStateChangeException{

 display = Display.getDisplay(this);

 mainForm = new Form("OrientationMidlet");

 mainForm.addCommand(exitCmd);

 mainForm.setCommandListener(this);

 getOrientation();

 display.setCurrent(mainForm);

 }

 private void getOrientation()

 {

try{

Orientation orientation = Orientation.getOrientation();

float azimuth = orientation.getCompassAzimuth();

float pitch = orientation.getPitch();

float roll = orientation.getRoll();

boolean isOrientationMagnetic = orientation.isOrientationMagnetic();

mainForm.append("azimuth "+azimuth);

mainForm.append("pitch "+pitch);

mainForm.append("roll "+roll);

mainForm.append("isOrientationMagnetic "+isOrientationMagnetic);

}catch(Exception e)

{

mainForm.append("Exception "+e);

}

 }

 public void commandAction(Command c, Displayable d) {

 if (c == exitCmd) {

 destroyApp(false);

 notifyDestroyed();

 }

 }

}
[image: image2][image: image3][image: image4][image: image5][image: image6][image: image7][image: image8][image: image9][image: image10][image: image11][image: image12][image: image13][image: image14][image: image15][image: image16][image: image17][image: image18][image: image19]
Information Guide – v 0.9

Page 26 of 26

