

Location API
 Version 0.9, Draft

JSR 179

 API Guide

COPYRIGHT

Samsung Electronics Co. Ltd.
This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law. Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.
All other company and product names may be trademarks of the respective companies
with which they are associated.

Information Guide – v 0.9 Page 2 of 26

 API Guide

About This Document

This document describes the JSR 179 Location API followed by sample code.

Scope

This document is intended for MIDP developers who want to develop mobile Java
applications. This document introduces you to the Location API for Java ME(JSR 179)
API that can be used for developing location‐based services. It assumes good knowledge
of java programming language.

To know more about Java ME basics and Java programming language, refer to the
Knowledge Base under Samsung Mobile Innovator (SMI).

 http://innovator.samsungmobile.com/platform.main.do?platformId=3

Document History:

Date Version Comment

22/06/09 0.9 Draft

References:

1. Location API JSR : http://jcp.org/en/jsr/detail?id=179

2. Location API Article : http://developers.sun.com/mobility/apis/articles/location/

Abbreviations:

JSR Java Specification Request

API Application Programming Interface

CLDC Connected Limited Device Configuration

BTS Base Transceiver Station

GPS Global Positioning System

Information Guide – v 0.9 Page 3 of 26

http://innovator.samsungmobile.com/platform.main.do?platformId=3.
http://jcp.org/en/jsr/detail?id=179
http://developers.sun.com/mobility/apis/articles/location/

 API Guide

Table of Contents

Introduction... 5

Expressing Location... 5

Device Location .. 5

Overview ... 6

API Description .. 6

Location.. 7

Obtaining a Location: .. 7

Landmark .. 11

Adding Landmark into LandmarkStore ... 12

Retrieving Landmark from LandmarkStore .. 13

Deleting Landmark from LandmarkStore.. 13

Orientation... 14

Detecting Location API presence ... 15

Security & Permissions .. 15

Location Example ... 16

Class: LocationMidlet.java .. 16

Landmark Example .. 20

Class: LandmarkMidlet.java... 20

Orientation Example .. 25

Class: OrientationMidlet.java ... 25

List of Tables

Table 1: Class Information... 6

Table 2: Interface Information... 7

Table 3: Exception Information .. 7

Table 4: Permissions... 15

Information Guide – v 0.9 Page 4 of 26

 API Guide

Introduction
Location API is an Optional Package javax.microedition.location that provides access to
location based information. Location API provides a standard for developers to write
mobile location‐based applications. Location API gives information about the present
physical location of the device.

It can be used with many Java ME profiles. The minimum platform is CLDC and the
targets are low memory devices. This API implementation footprint is:

• ROM budget max. 20 KB

• RAM budget max. 2 KB

Expressing Location:

Locations can be expressed in spatial terms or text descriptions.

A spatial location is expressed in the form of latitude‐longitude‐altitude coordinate
system. Latitude is expressed as 0‐90 degrees north or south of the equator and
longitude as 0‐180 degrees east or west of the prime meridian, which passes through
Greenwich, England. Altitude is expressed in meters above sea level. A text description
is usually expressed as a street address, including city, postal code, and so on.

Device Location:

Applications can use the following methods to determine the device location:

Cell ID (Using the mobile phone network)

Cell ID method can be used to determine device location by identifying the Base
Transceiver Station (BTS), that the device is communicating with and the location of that
BTS. The accuracy is less since the accuracy of this method depends on the size of the
cell.

GPS (Using satellites)

The Global Positioning System (GPS) is potentially the most accurate method but it has
some drawbacks. The extra hardware can be costly, consumes battery while in use, and
requires some warm‐up after a cold start to get an initial fix on visible satellites. It also
suffers from ʺcanyon effectsʺ in cities, where satellite visibility is intermittent.

Information Guide – v 0.9 Page 5 of 26

 API Guide

Bluetooth (Using short‐range positioning)

In relatively small areas, such as a single building, a local area network can provide
locations along with other services. For example, appropriately equipped devices can
use Bluetooth for short‐range positioning.

Overview

The features of the Location API are:

• Location ‐To obtain information about the device location.

• Landmarks ‐ To create, edit, store, and retrieve landmarks.

• Orientation ‐ To obtain the orientation of a device.

Location API package javax.microedition.location contains the basic classes and interface
to access location information.

API Description:

Package contains 9 classes, 2 interfaces and 2 exceptions. The following table shows the
classes, interface and exceptions.

Table 1: Class Information

Class Description

AddressInfo AddressInfo class holds textual address information about a location.

Coordinates Coordinates class represents coordinates as latitude‐longitude‐altitude
values.

Criteria The criterion used for the selection of the location provider is defined
by the values in this class.

Landmark The Landmark class represents a landmark, i.e. a known location with
a name.

LandmarkStore The LandmarkStore class provides methods to store, delete and
retrieve landmarks from a persistent landmark store

Location The Location class represents the standard set of basic location
information.

LocationProvider This is the starting point for applications using this API and represents
a source of the location information.

Orientation The Orientation class represents the physical orientation of the
terminal

QualifiedCoordinates The QualifiedCoordinates class represents coordinates as latitude‐
longitude‐altitude values that are associated with an accurate value

Information Guide – v 0.9 Page 6 of 26

 API Guide

Table 2: Interface Information

Interface Description

LocationListener
The LocationListener represents a listener that receives events associated
with a particular LocationProvider.

ProximityListener
This interface represents a listener to events associated with detecting
proximity to some registered coordinates

Table 3: Exception Information

Exception Description

LandmarkException
The LandmarkException is thrown when an error related to handling
landmarks has occurred.

LocationException The LocationException is thrown when a location API specific error
has occurred.

Location

Location feature provides location and related information about the device. Location
and LocationProvider are the classes, which provide methods to obtain Location
information.

The Location class abstracts the location information. Information includes timestamp,
coordinates, accuracy, speed, course, information and optional textual address
information.

Obtaining a Location

Following are the steps to obtain device Location:

1. Specify Criteria

2. Set Criteria to LocationProvider

3. Get LocationProvider instance as per the Criteria specified

4. Get Location object from LocationProvider

5. Get Coordinates from Location

To obtain Location information, application needs to obtain LocationProvider instance
by specifying the criteria. LocationProvider is the starting point of the application to
get Location Information. It represents a Location module generating Locations.

The application can specify criteria for the selection of LocationProvider. It is up to the
application to determine and specify criteria for selecting the location method.

Information Guide – v 0.9 Page 7 of 26

 API Guide

Criteria is used by LocationProvider factory method

static LocationProvider getInstance(Criteria criteria)

to get LocationProvider instance that best fits the given criteria.

Using LocationProvider, application can now get Location object by:

1) Using getLocation(int timeout) method to get single Location Object.

2) Registering listener to get Location at periodic intervals.

Location object contains location information and coordinates. Location information
includes accuracy, speed, course, and information about the positioning method used
for the location, plus an optional textual address.

Coordinates are represented by either of two classes:

• Coordinates object represents a pointʹs latitude and longitude in degrees,
and altitude in meters.

• QualifiedCoordinates object contains latitude, longitude, altitude and an
indication of their accuracy, represented as the radius of an area.

Textual address of the location is represented by AddressInfo object. AddressInfo
contains the textual information about the location. It has getter and setter methods
for setting and retrieving data based on the constant fields. Example: Country,
Country Code, Phone number, State, Street etc.

1) Using getLocation() method

The following code snippet shows how to obtain location object using getLocation()
method:

…
/* Set criteria for selecting a location provider:
 accurate to 500 meters horizontally*/
Criteria cr= new Criteria();
cr.setHorizontalAccuracy(500);

/* Get an instance of the provider*/
LocationProvider lp= LocationProvider.getInstance(cr);

/* Request the location, setting a one‐minute timeout*/
Location l = lp.getLocation(60);
Coordinates c = l.getQualifiedCoordinates();

if(c != null) {

Information Guide – v 0.9 Page 8 of 26

 API Guide

 /* Use coordinate information*/
 double lat = c.getLatitude();
 double lon = c.getLongitude();
}
…

2) Using Listener

LocationProvider class has two listener methods to register a listener to get
periodically updated Location objects via

1. LocationListener

setLocationListener(LocationListener listener, int interval, int timeout, int maxAge)

2. ProximityListener

addProximityListener(ProximityListener listener, Coordinates coordinates, float
proximityRadius)

LocationListener

LocationListener gives regular position updates at defined interval.

LocationListener has two methods

locationUpdated(LocationProvider provider,Location location)

locationupdated() method gives location updates at regular intervals.

providerStateChanged(LocationProvider provider,int newState)

providerStateChanged() gives information of LocationProvider state i.e. AVAILABLE,
OUT_OF_SERVICE or TEMPORARILY_UNAVAILABLE

Following code snippet shows the implementation of the above methods.

…
public void locationUpdated(LocationProvider provider, Location location){
 if (location != null && location.isValid()) {
 QualifiedCoordinates qc = location.getQualifiedCoordinates();
 form.append(ʺLat: ʺ+qc.getLatitude()+ʺLon: ʺ+qc.getLongitude()+ ʺAlt: ʺ +
qc.getAltitude()”);
 }
 }

public void providerStateChanged(LocationProvider provider,int newState){
form.append(“newState ”+newState);
}
…

Information Guide – v 0.9 Page 9 of 26

 API Guide

ProximityListener

Application can also add ProximityListener that notifies when proximity to registered
coordinates is detected. The listener is called when the terminal enters the proximity of
registered coordinates.

ProximityListener has two methods:

proximityEvent(Coordinates coordinates,Location location)

proximityEvent is called when user comes in the proximity of a particular location.

monitoringStateChanged(boolean isMonitoringActive)

monitoringStateChanged is called when the state of the proximity monitoring is
changed. isMonitoringActive boolean indicates the new state of the proximity
monitoring.

true ‐ indicates that the proximity monitoring is active.

false ‐ indicates that the proximity monitoring cannot be done currently.

Following code snippet shows the implementation of the above methods:

…
try {
 Criteria cr = new Criteria();
 provider = LocationProvider.getInstance(cr);
 /* coordinates around which proximity has to be found*/
 Coordinates proximityCoordinates = new Coordinates(34.359766723, 60.495850625, 410);
 /*Listener registration for above coordinates for proximity of 2000 meters.*/
 LocationProvider.addProximityListener(this, proximityCoordinates, 2000.0f);

 } catch (LocationException e) {

 e.printStackTrace();
 }

/*ProxmityListener methods*/

public void proximityEvent(Coordinates arg0, Location arg1) {
form.append(ʺYou are presently within 2000 meters radius from Location Lat: 34.359766723
Long: 60.495850625ʺ);
}

public void monitoringStateChanged(boolean isActive)
{
 if(isActive)

Information Guide – v 0.9 Page 10 of 26

 API Guide

 form.append(“Monitoring is Active”);
 else
 form.append(“Monitoring is currently not Active”);

}
…

Landmark

Landmark is a physical location with a name that represents as a location to the end
user. Location API allows user to create new landmark, add, store, retrieve, and delete
landmarks. Landmark and LandmarkStore class provides this functionality.

Landmark class represents Landmark information. Landmark information includes
name, description, address information and qualified coordinates. Address information
is represented by AddressInfo object.

Landmark(String name, String description, QualifiedCoordinates coordinates, AddressInfo
addressInfo)

Following code snippet shows how to create Landmark

...
AddressInfo textAddress = new AddressInfo();
textAddress.setField(AddressInfo.COUNTRY , ʺUKʺ);
textAddress.setField(AddressInfo.CITY , ʺLondonʺ);

Landmark landmark = new Landmark(ʺMy Restaurant”, ” My Restaurant best in the worldʺ,
new QualifiedCoordinates(11.289496608768690, 34.59678880927362,460, 31.32, 45.000) ,
textAddress);
...

LandmarkStore is a shared persistent area to store, modify, and delete landmarks.
Landmark information can be stored in this data store and can be used later by the
application as and when required.

Landmark can also be categorized in LandmarkStore. The Landmark has a name and
may be placed in a category or several categories. The category is intended to group
landmarks that are of similar type to the end user, e.g. Restaurants, Museums, etc.

All Landmark store database must be shared between all Java ME Applications and may
be shared with native applications.

Information Guide – v 0.9 Page 11 of 26

 API Guide

Following code snippet shows creating LandmarkStore and LandmarkStore Category:

…
/*Check if the Landmark Store already exists*/
String allLandmarkStores[] = LandmarkStore.listLandmarkStores();
boolean isStoreExist=false;
for(int i=0; i< allLandmarkStores.length; i++) {
 if(allLandmarkStores [i].equals(ʺMyLandmarksʺ)) {
 isStoreExist = true;
 }
}

/*Create a new Lanmark Store if the store does not exist*/
if(!isStoreExist){
 LandmarkStore.createLandmarkStore(ʺMyLandmarkStoreʺ);
}
myLmStore = LandmarkStore.getInstance(ʺMyLandmarkStoreʺ);
/*Add category*/
myLmStore.addCategory(ʺRestaurantʺ);
...

Adding Landmark into LandmarkStore

LandmarkStore class provides addLandmark(Landmark landmark, String category) to add
Landmark object into LandmarkStore. Category could be Restaurants, Home etc.

Following code snippet shows how to add Landmark into LandmarkStore:

…
Criteria cr = new Criteria();
/*Accuracy set to 100 Meters*/
cr.setHorizontalAccuracy(100);
/*Get LocationProvider*/
LocationProvider provider = LocationProvider.getInstance(cr);

/*180 secs time out*/
Location location = provider.getLocation(180);
QualifiedCoordinates c = location.getQualifiedCoordinates();
double latitude = c.getLatitude();
double longitude = c.getLongitude();
float altitude = c.getAltitude();
float hAccuracy = c.getHorizontalAccuracy();
float vAccuracy = c.getVerticalAccuracy();

/* Same Address Info for all landmarks. */
AddressInfo textAddress = new AddressInfo();
textAddress.setField(AddressInfo.COUNTRY , ʺMyCountryʺ);

Information Guide – v 0.9 Page 12 of 26

 API Guide

textAddress.setField(AddressInfo.STATE , ʺMy Stateʺ);
textAddress.setField(AddressInfo.CITY , ʺMyCityʺ);
textAddress.setField(AddressInfo.STREET , ʺMyStreetʺ);

Landmark landmark = new Landmark(name,description,new QualifiedCoordinates(latitude,
longitude, altitude, hAccuracy, vAccuracy) ,textAddress);
…

Retrieving Landmark from LandmarkStore
Similarly, Landmark objects can be retrieved using getLandmarks(). The Landmark
objects returned from the getLandmarks() guarantee that the application can read a
consistent set of the landmark data valid at the time of obtaining the object instance,
even if the landmark information in the store is modified subsequently by this or some
other application. getLandmarks() returns an enumeration of all Landmarks.

…
try {
 Enumeration landmarkEnum = MyLandmarkStore.getLandmarks();
 while (landmarkEnum.hasMoreElements()) {
 Landmark myLandmark = (Landmark)landmarkEnum.nextElement();
 double lmLatitude = myLandmark.getQualifiedCoordinates().getLatitude();
 double lmLongitude =
 myLandmark.getQualifiedCoordinates().getLatitude();
 String landmarkName = myLandmark.getName();
 String lmCountry=
 landmark.getAddressInfo().getField(AddressInfo.COUNTRY);

 form.append(“landmarkName “+landmarkName + ʺLatitude: ʺ + lmLatitude + ʺ Longitude: ʺ +
lmLongitude + ʺ Country: ʺ +lmCountry);
}

}catch(Exception e){
 form.append(“No Landmarks in MyLandmarkStore”);
}
…

Deleting Landmark from LandmarkStore

Landmark objects can be deleted from LandmarkStore database by using
deleteLandmarkStore(String storeName).

 All landmarks and categories defined in this store are removed. Similarly,
deleteLandmark (Landmark lm) deletes landmark from current LandmarkStore.

This method removes the landmark from all categories and deletes the information from
this LandmarkStore.

Information Guide – v 0.9 Page 13 of 26

 API Guide

…
try{
/*Check if the Landmark Store already exists*/
String allLandmarkStores[] = LandmarkStore.listLandmarkStores();
boolean isStoreExist=false;
for(int i=0; i< allLandmarkStores.length; i++) {
 if(allLandmarkStores [i].equals(ʺMyLandmarksʺ)) {
 isStoreExist = true;
 }
}
if(isStoreExist)
LandmarkStore .deleteLandmarkStore(“MyLandmarks”);
}catch(Exception e)
{
form.append(“Exception at deleting Landmark”+e);
}
…

Orientation

This feature is useful for navigational purpose. Orientation class represents the physical
orientation of the device (compass orientation). Application may be able to determine
not only device location but also its orientation, if the device has a compass.

Orientation is described by azimuth to north (the horizontal pointing direction), pitch
(the vertical elevation angle) and roll (the rotation of the terminal around its own
longitudinal axis).

To get Orientation object use getOrientation() method. Following code snippet shows
orientation

…
Orientation orientation = Orientation.getOrientation();
float azimuth = orientation.getCompassAzimuth();
float pitch = orientation.getPitch();
float roll = orientation.getRoll();
boolean isOrientationMagnetic = orientation.isOrientationMagnetic();
form.append(“azimuth ”+azimuth+” pitch ”+pitch+” roll ”+roll+” isOrientationMagnetic ”+
isOrientationMagnetic);
…

isOrientationMagnetic() returns a boolean value that indicates whether this Orientation is
relative to the magnetic field of the Earth or relative to true north and gravity.

Information Guide – v 0.9 Page 14 of 26

 API Guide

Detecting Location API presence

 To check whether the handset support Location API,

 System.getProperty(ʺmicroedition.location.versionʺ).

can be used. If it is supported, the location version is returned else null will be returned.

Security & Permissions
Some methods in this API are defined to throw a SecurityException if the user does
not have the permissions needed to perform the action.

Following table shows the permissions associated with Location API.

Table 4: Permissions

Permissions name Methods protected by this Permission

javax.microedition.location.Location
LocationProvider.getLocation()
LocationProvider.setLocationListener()

javax.microedition.location.Orientation Orientation.getOrientation()

javax.microedition.location.ProximityListen
er

LocationProvider.addProximityListener()

javax.microedition.location.LandmarkStore.
read

LandmarkStore.getInstance()
LandmarkStore.listLandmarkStores()

javax.microedition.location.LandmarkStore.
write

LandmarkStore.addLandmark()
LandmarkStore.deleteLandmark()
LandmarkStore.removeLandmarkFromCategor
y()
LandmarkStore.updateLandmark()

javax.microedition.location.LandmarkStore.
category

LandmarkStore.addCategory(),
LandmarkStore.deleteCategory()

javax.microedition.location.LandmarkStore.
management

LandmarkStore.createLandmarkStore(),
LandmarkStore.deleteLandmarkStore()

Information Guide – v 0.9 Page 15 of 26

 API Guide

Location Example

This sample example shows how to use Location API to get location information.

Class: LocationMidlet.java

import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;

import javax.microedition.location.Criteria;
import javax.microedition.location.Location;
import javax.microedition.location.LocationException;
import javax.microedition.location.LocationProvider;

import javax.microedition.location.QualifiedCoordinates;
import javax.microedition.midlet.MIDlet;

public class LocationMidlet extends MIDlet implements CommandListener,Runnable{

 /* Define String Constants */
 private final String locate_String = ʺLocateʺ;
 private final String exit_String = ʺExitʺ;
 private final String done_String = ʺDoneʺ;
 private final String locationForm_Title_String = ʺLocation Demoʺ;
 private final String locationInfo_String =
 ʺPress Locate Command to start Application Demo \nʺ;
 private final String exitInfo_String = ʺPress Exit Command to exit Application \nʺ;
 /*LocationMidlet Display */
 private Display display;

 /*LocationMidlet Commands*/
 private Command cmd_Locate, cmd_Exit, cmd_Done;

 /*LocationMidlet Form*/
 private Form locationForm;

 /** location provider */
 private LocationProvider locationProvider = null;
 private Location location;
 private QualifiedCoordinates coordinates;

 private Thread locationThread;

Information Guide – v 0.9 Page 16 of 26

 API Guide

 /*LocationMidlet Constructor*/
 public LocationMidlet()
 {
 /*Intialize Commands*/
 cmd_Locate = new Command(locate_String, Command.OK,1);
 cmd_Done = new Command(done_String, Command.OK,1);
 cmd_Exit = new Command(exit_String, Command.EXIT,2);

 /*Create Form*/
 locationForm = new Form(locationForm_Title_String);

 /*Appending location and Exit Information*/
 locationForm.append(locationInfo_String);
 locationForm.append(exitInfo_String);

 /*Adding commands to Location Form*/
 locationForm.addCommand(cmd_Exit);
 locationForm.addCommand(cmd_Locate);
 locationForm.setCommandListener(this);
 /*Intialize display*/
 display = Display.getDisplay(this);

 /*Create LocationProvider Instance*/
 locationProvider = null;
 createLocationProvider();
 if(locationProvider == null)
 {
 displayError();
 }
 }

 public void startApp() {
 /*display Form*/
 display.setCurrent(locationForm);
 }

 public void pauseApp() {

 /*your code to handle interrupt*/
 }

 public void destroyApp(boolean unconditional) {
 /*your code before notifyDestroyed method*/
 notifyDestroyed();
 }

 private void exitMidlet()

Information Guide – v 0.9 Page 17 of 26

 API Guide

 {
 destroyApp(true);
 }

 private void displayError()
 {
 locationForm.deleteAll();
 locationForm.append(ʺUnable to create LocationProviderʺ);
 locationForm.addCommand(cmd_Exit);
 }

 /*Initialize LocationProvider using Default Criteria*/
 private void createLocationProvider() {
 if (locationProvider == null) {
 /*Constructs a Criteria object. All the fields are set to the default values*/
 Criteria criteria = new Criteria();
 /* criteria Fields which you can set
 criteria.setCostAllowed(true); //default value
 criteria.setSpeedAndCourseRequired(true);
 criteria.setHorizontalAccuracy(500);
 criteria.setAltitudeRequired(true);
 criteria.setPreferredPowerConsumption(Criteria.POWER_USAGE_LOW);
 */

 try {
 locationProvider = LocationProvider.getInstance(criteria);
 } catch (LocationException le) {
 /*Unable to create Location Provider using this criteria*/
 le.printStackTrace();
 }
 }
 }

 private void createLocation()
 {
 try {
 // Get a location fix for 30 seconds timeout
 location = locationProvider.getLocation(30);
 } catch (LocationException ex) {
 ex.printStackTrace();
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 }

 private void getLocationResults()
 {

Information Guide – v 0.9 Page 18 of 26

 API Guide

 coordinates = location.getQualifiedCoordinates();
 }

 private void displayLocationResults()
 {
 /*
 locationForm.append(ʺCourseʺ+loc.getCourse());
 locationForm.append(ʺSpeedʺ+loc.getSpeed());
 */
 locationForm.append(ʺAltitude:ʺ+coordinates.getAltitude() +ʺ\nʺ);
 locationForm.append(ʺLatitude:ʺ+coordinates.getLatitude() +ʺ\nʺ);
 locationForm.append(ʺLongitude:ʺ+coordinates.getLongitude() +ʺ\nʺ);
 }

 public void commandAction(Command cmd, Displayable disp) {
 if(cmd == cmd_Locate)
 {
 /*Deleting previous data displayed*/
 locationForm.deleteAll();
 /*Removing exit and locate command*/
 locationForm.removeCommand(cmd_Exit);
 locationForm.removeCommand(cmd_Locate);
 /*Adding done command*/
 locationForm.addCommand(cmd_Done);
 /*Create Thread to avoid deadlock*/
 locationThread = new Thread(this);
 locationThread.start();
 }else
 if(cmd == cmd_Exit)
 {
 exitMidlet();
 }else
 if(cmd == cmd_Done)
 {
 locationForm.deleteAll();

 /*Remove done command*/
 locationForm.removeCommand(cmd_Done);

 /*Adding commands to Location Form*/
 locationForm.addCommand(cmd_Exit);
 locationForm.addCommand(cmd_Locate);

 /*Appending location and Exit Information*/
 locationForm.append(locationInfo_String);
 locationForm.append(exitInfo_String);

Information Guide – v 0.9 Page 19 of 26

 API Guide

 }
 }

 public void run() {
 /*Get Location*/
 createLocation();
 /*Get Location Results*/
 getLocationResults();
 /*Display Results*/
 displayLocationResults();
 }
}

Landmark Example

This example shows how to add, store, retrieve, delete landmark.

Class: LandmarkMidlet.java

import java.io.IOException;

import java.util.Enumeration;
import java.util.Vector;

import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.List;

import javax.microedition.location.AddressInfo;
import javax.microedition.location.Coordinates;
import javax.microedition.location.Landmark;
import javax.microedition.location.LandmarkException;
import javax.microedition.location.LandmarkStore;
import javax.microedition.location.QualifiedCoordinates;

import javax.microedition.midlet.MIDlet;

public class LandmarkMidlet extends MIDlet implements CommandListener, Runnable{
 private final String OFFICE_CATEGORY = ʺOFFICEʺ;
 private LandmarkStore landmarkStore = null;

 private final int ADD_LANDMARK = 1;
 private final int SHOW_LANDMARK = ADD_LANDMARK + 1;
 private final int DELETE_LANDMARK = SHOW_LANDMARK + 1;

Information Guide – v 0.9 Page 20 of 26

 API Guide

 private int landmarkState;

 private List landmarkList;
 private Command cmd_Exit;
 private Command cmd_showLandmark, cmd_deleteLandmark;
 private Command cmd_addLandmark;
 private Display display;

 private Thread landmarkThread;
 private Vector landmarkVector;

 public LandmarkMidlet()
 {
 landmarkList = new List(ʺLandmark Demoʺ, List.IMPLICIT);

 cmd_Exit = new Command(ʺExitʺ, Command.EXIT, 1);
 /* cmd_addCategory = new Command(ʺAdd Categoryʺ, Command.SCREEN, 1); */
 cmd_addLandmark = new Command(ʺAdd Landmarkʺ, Command.SCREEN, 1);
 /* cmd_showCategory = new Command(ʺshow Categoryʺ, Command.SCREEN, 1); */
 cmd_showLandmark = new Command(ʺshow Landmarkʺ, Command.SCREEN, 1);
 cmd_deleteLandmark = new Command(ʺdelete Landmarkʺ, Command.SCREEN, 1);
 /* cmd_deleteCategory = new Command(ʺdelete Categoryʺ, Command.SCREEN, 1);*/

 landmarkList.addCommand(cmd_Exit);
 landmarkList.addCommand(cmd_addLandmark);
 landmarkList.addCommand(cmd_showLandmark);
 landmarkList.addCommand(cmd_deleteLandmark);

 landmarkList.setCommandListener(this);

 landmarkVector = new Vector();

 display = Display.getDisplay(this);

 display.setCurrent(landmarkList);
 }

 public void startApp() {
 loadLandmarks();
 }

 public void pauseApp() {
 /*your code to handle interrupts*/
 }

 public void destroyApp(boolean unconditional) {
 /*your code before notifyDestroyed*/

Information Guide – v 0.9 Page 21 of 26

 API Guide

 notifyDestroyed();
 }

 private void exitMidlet()
 {
 destroyApp(true);
 }

 private void loadLandmarks() {
 landmarkStore = LandmarkStore.getInstance(null);
 /*Added Office Category in LandmarkStore*/
 addLandmarkCategory();
 }

 private void addLandmarkCategory()
 {
 try {
 Enumeration c = landmarkStore.getCategories();
 boolean exists;
 for (exists = false; c.hasMoreElements() ;)
 {
 String category = (String)c.nextElement();
 if (category.equals(OFFICE_CATEGORY)) {
 exists = true;
 break;
 }
 }
 /*If Office Category doesn’t exists then add Office Category
 in LandmarkStore*/
 if(!exists)
 landmarkStore.addCategory(OFFICE_CATEGORY);
 } catch (IOException ex) {
 ex.printStackTrace();
 } catch (LandmarkException ex) {
 ex.printStackTrace();
 }
 }

 private void addLandmark()
 {
 /*Latitude range ‐90 to 90 degrees*/
 /*Longitude range ‐180 to 180 degrees*/
 QualifiedCoordinates officeCoordinates = new QualifiedCoordinates(85.0, 85.0, 100, 500,
500);

 AddressInfo officeAddressInfo = new AddressInfo();
 officeAddressInfo.setField(AddressInfo.STREET, ʺOfficeStreetʺ);

Information Guide – v 0.9 Page 22 of 26

 API Guide

 officeAddressInfo.setField(AddressInfo.CITY, ʺOfficeCityʺ);
 officeAddressInfo.setField(AddressInfo.POSTAL_CODE, ʺ123456ʺ);
 officeAddressInfo.setField(AddressInfo.PHONE_NUMBER, ʺ1234567890ʺ);

 Landmark landmark1 = new Landmark(ʺMy Officeʺ, ʺOffice Descriptionʺ,
(QualifiedCoordinates) officeCoordinates, officeAddressInfo);

 try {
 /*Category needs to be present before adding Landmark
 * addLandmarkCategory() adds category
 */
 landmarkStore.addLandmark(landmark1, OFFICE_CATEGORY);
 /*Refresh List with newly added Landmark*/
 showLandmark();
 } catch (IOException ex) {
 /*Landmark could not be added to Office category*/
 ex.printStackTrace();
 }
 }

 private void showLandmark()
 {
 try {
 /*delete landmarks in list and vector*/
 landmarkVector.removeAllElements();
 landmarkList.deleteAll();
 Enumeration c = landmarkStore.getLandmarks();
 boolean exists;
 /*returns null if no landmark is present in landmarkStore Category*/
 for (exists = false; c!=null && c.hasMoreElements();) {
 Landmark landmark = (Landmark) c.nextElement ();
 landmarkVector.addElement(landmark);
 landmarkList.append(landmark.getName(), null);
 }
 } catch (IOException ex) {
 ex.printStackTrace();
 }
 }

 private void deleteLandmark()
 {
 int landmarkIndex = landmarkList.getSelectedIndex();
 /*Check to avoid OutofBoundsException*/
 if(landmarkIndex>‐1)
 {
 Landmark landmark = (Landmark)landmarkVector.elementAt(landmarkIndex);
 try {

Information Guide – v 0.9 Page 23 of 26

 API Guide

 landmarkStore.deleteLandmark(landmark);
 } catch (IOException ex) {
 ex.printStackTrace();
 } catch (LandmarkException ex) {
 ex.printStackTrace();
 }
 /*Refresh List*/
 showLandmark();
 }
 }

 public void commandAction(Command cmd, Displayable disp) {
 if(cmd_Exit == cmd)
 {
 exitMidlet();
 }else
 if(cmd_addLandmark == cmd)
 {
 landmarkState = ADD_LANDMARK;
 landmarkThread = new Thread(this);
 landmarkThread.start();
 }else
 if(cmd_showLandmark == cmd)
 {
 showLandmark();
 }else
 if(cmd_deleteLandmark == cmd)
 {
 landmarkState = DELETE_LANDMARK;
 landmarkThread = new Thread(this);
 landmarkThread.start();
 }
 }

 public void run() {
 if(ADD_LANDMARK == landmarkState)
 addLandmark();
 else
 if(DELETE_LANDMARK == landmarkState)
 deleteLandmark();

 landmarkState = ‐1;
 }
}

Information Guide – v 0.9 Page 24 of 26

 API Guide

Orientation Example

This example shows how to get Orientation.

Class: OrientationMidlet.java

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.location.Orientation;

public class OrientationMidlet extends MIDlet implements CommandListener {

 private Command exitCmd = new Command(ʺExitʺ, Command.EXIT, 1);
 private Display display;
 private Form mainForm;

 public OrientationMidlet(){
 }

 protected void destroyApp(boolean unconditional){

 }

 protected void pauseApp(){
 }

 protected void startApp()throws MIDletStateChangeException{
 display = Display.getDisplay(this);
 mainForm = new Form(ʺOrientationMidletʺ);
 mainForm.addCommand(exitCmd);
 mainForm.setCommandListener(this);
 getOrientation();
 display.setCurrent(mainForm);
 }

 private void getOrientation()
 {
 try{
 Orientation orientation = Orientation.getOrientation();
 float azimuth = orientation.getCompassAzimuth();
 float pitch = orientation.getPitch();
 float roll = orientation.getRoll();
 boolean isOrientationMagnetic = orientation.isOrientationMagnetic();

 mainForm.append(ʺazimuth ʺ+azimuth);
 mainForm.append(ʺpitch ʺ+pitch);
 mainForm.append(ʺroll ʺ+roll);

Information Guide – v 0.9 Page 25 of 26

Information Guide – v 0.9 Page 26 of 26

API Guide

 mainForm.append(ʺisOrientationMagnetic ʺ+isOrientationMagnetic);
 }catch(Exception e)
 {
 mainForm.append(ʺException ʺ+e);
 }
 }

 public void commandAction(Command c, Displayable d) {
 if (c == exitCmd) {
 destroyApp(false);
 notifyDestroyed();
 }
 }

}

	Location API
	Scope
	Document History:
	References:

