Low Level Ul Canvas

Version 0.9, Draft

aSﬂMSUNG

mobile imnovakar

API GUIDE

COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law. Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.

All other company and product names may be trademarks of the respective companies
with which they are associated.

APl Guide —v 0.9 Page 2 of 21

aSI\MSUNG

mobile imnavakor

About this Document

This document describes how to implement low-level Ul with some sample code

snippets.

Scope

This document is intended for Java ME developers who wish to develop Java ME

applications. It assumes good knowledge of java programming language.

To know about Java ME basics and Java programming language, refer to the Knowledge

Base under Samsung Mobile Innovator (SMI).

http://innovator.samsungmobile.com/platform.main.do?platformId=3

Document History:

Date

Version

Comment

22/06/09

0.9

Draft

References:

User Interface Programming- http://developers.sun.com/mobility/midp/articles/ui/-

Abbreviations:

Java ME

Java Micro Edition

MIDP

Mobile Information Device Profile

API

Application Programming Interface

APl Guide —v 0.9

Page 3 of 21

http://innovator.samsungmobile.com/platform.main.do?platformId=3
http://developers.sun.com/mobility/midp/articles/ui/-

— Sl AP Guide

Table of Contents

INETOAUCHON. ...t 5
OVEIVIEW ..ttt 6
CANVAS.......ooiiiiii s 6
GFAPNICS ...t bbbttt r e nre s 10
How to call Paint?........ccocoviiiiiiiiiiiii e 12
Sample source code showing how to display a splash screen using Canvas.................... 13
Class: SPIaShMIAIET.JAVA.ceeiiiiiiieiiie e 13
Class SplashCanVas. JaVa..........cccueiieiuiiieie et 14
Sample source code using Low Level APL.........c.ccccooiiiiiiiieee, 17
Class: CanVaSIMIAIEL.JAVA.ccveiriiiriiiiie e 17
Class: MaAINCANVAS. JAVA........cueieeiureieiiesieeiesaesteeeesseesteesesseessaassesseesseessesseesssassessesnns 18
Table of Figures
Figure 1: ULElement§f. H.... BUS. ... S S8 G H. .08 8N S 8. ... 5
Figure 2: X-Y'Co-ordindiis . 48 .. 3.0 X 0. .. S .08 0. L. .00 11
Figure 3: @lipping REFNGET.. 0. W W T 0Nt . W e T 12
Figure 4: Splash Screen...........ccocooiiiiiiiii 16
Figtiigho: SPSIT SCreen OMELD....uari-5 bosustieeee B bure el mamans 2008 e o Lmm nmmmes s 16
Figure 6: Initial Screen...........cocooviviiiiiiiiic 21
Figure 7: Key Events display.........c.ccccovviiiiiiiiiiiiiicc 21

APl Guide —v 0.9 Page 4 of 21

Introduction

In Java ME application, MIDlet interaction with the user is done through UI element.
There are two ways to design Ul elements as shown in Figure 1

e High Level API (Screen)
e Low Level API (Canvas)

High level API is used to achieve portability but one cannot get more control over its
look and feel. E.g., Visual appearance of the components cannot be defined. These visual
appearances may be shape, color or font etc.

Low-level API is used in applications with precise control over graphic elements and
access to low level events. It provides methods to handle key events, game actions and
pointer events (if supported by the device). Low-level API is used to draw images,
perform animations, scrolling, updating the display etc. It is mainly used for games
development and rich UI applications.

Displayabile
I
Screen
e - w e
‘ Alert ‘ List ‘ Form H TextBox

Figure 1: UI Elements

With the help of both APIs, Applications and Games for Samsung Handsets can be
developed. To know more about High Level API, please refer to the Samsung Innovator
>Java > Knowledge Base.

APl Guide —v 0.9 Page 5 of 21

<2 SAMSUNG API Guide
mobile innovakor
Overview

Low Level Ul is mainly implemented by two classes present in javax.microedition.lcdui
package. Those are:

e Canvas
e Graphics
Canvas

Canvas is a base class for developing Java ME applications that need to handle low-level
events and to issue graphics call for drawing to the display. Different methods are
provided by the Java ME developers to handle game actions, key events and pointer
events (if supported by the device). Methods are also provided to identify the device’s
capabilities and mapping of keys to game actions.

Adding Commands in Canvas

Like other subclasses of Displayable, the Canvas class allows the application to register a
listener for commands. Unlike other Displayables, however, the Canvas class requires
applications to subclass it in order to use it.

The sample code snippet shows how to add commands in Canvas:

API Guide —v 0.9 Page 6 of 21

<2 SAMSUNG API Guide
mobile innovakor

Creating user interface using Low Level Ul

Canvas is an abstract class. Application must be derived from the Canvas and
implement the paint() method to create a user interface using the low-level APIs. paint()
method accepts a Graphics object, which provides methods for rendering on the device
screen.

The sample code snippet shows how to draw a string using paint() method:

Full screen using Canvas

There are two modes in which Canvas can be displayed.

e Normal mode - In normal mode, space on the display may be occupied by
command labels, a title, and a ticker.
e Full Screen mode - In Full Screen mode, the application is requesting that the

Canvas occupies as much of the display space as is possible.

Canvas objects are in normal mode by default. The normal mode and full-screen mode is
controlled using setFullScreenMode(boolean) method.

Calling setFullScreenMode(boolean) may result in sizeChanged() being called. The
default implementation of this method does nothing. The application can override this
method to handle changes in size of available drawing area.

API Guide —v 0.9 Page 7 of 21

g snmsune e
mobile imnnavakor

Canvas width and height can be found through the use of getWidth() and getHeight()
method. getWidth() returns the width of the canvas and getHeight() returns the height
of the canvas.

The sample code snippet below shows how to set full screen in canvas:
public class FullCanvas extends Canvasf{
public FullCanvas(){

setFullScreenMode(true);

}
public void paint(Graphics g){
g.setColor(0,0,245);

g fillRect(0, 0, getWidth(), getHeight());
}

}
Low-Level Event Handling

To monitor key events, a subclass of canvas must override one of these methods as

follows:
Method Name Description

protected void keyPressed(int This event is called when a physical key on the keypad

keycode) is pressed.

protected void keyReleased(int | This event is called when a pressed key is released.

keycode)

protected void keyRepeated(int | This event is called when a key is held down. This

KeyCode) event may not be supported on all platforms. Support of
this method can be verified with a call to
hasRepeatEvents().

protected void This event is called when a pointer is pressed. This

pointerPressed(int x, int y) event may not be supported on all platforms. Support of

this method can be verified with a call to
hasPointerEvents().

protected void This event is called when a pointer is dragged. This
pointerDragged(int x, int y) event may not be supported on all platforms. Support of
this method can be verified with a call to
hasPointerMotionEvents().

protected void This event is called when a pointer is released. This

pointerReleased(int x, int y) event may not be supported on all platforms. Support
of this method can be verified with a call to
hasRepeatEvents().

APl Guide —v 0.9 je 8 of 21

— Sl Guide

keyRepeated is not necessarily available in all devices. The applications can check the
availability of repeat actions by calling the hasRepeatEvents() method of the Canvas.
hasRepeatEvents() returns true if the device supports keyRepeated functionality.

An integer code corresponding to the key to which the event pertains is passed as a
parameter in keyPressed, keyRepeated and keyReleased methods. It is important to
understand that key codes are likely to change between different manufacturer devices,
making key event handling another sensitive area of low-level Ul portability.

E.g., On device A, pressing LeftSoftKey on the keypad may come through as key code 21
but on device B the same key might come through as key code -6. Luckily, MIDP
provides tools to assist in normalizing key press events.

To make key handling generic across the devices, applications should use standard
keycodes defined by MIDP as shown in below code snippet.

public void keyPressed(int keycode)

{
if (keycode == KEY_NUMO)

{
System.out.printIn("Pressed Key 0");

} else if(keycode == KEY_NUM1){
System.out.println("Pressed Key 1");
} else if(keycode == KEY_NUM?2){
System.out.printIn("Pressed Key 2");
}

}

There are portable applications, which need arrow key events and gaming-related
events. These applications should use game actions in preference to key codes and key
names.

MIDP defines the following set of abstract key events: UP, DOWN, LEFT, RIGHT, FIRE,
GAME_A, GAME_B, GAME_C and GAME_D.

An application can get the mapping of the key events to abstract key events by calling
Canvas.getGameAction(int keycode) method as shown in sample code snippet below:

public void keyPressed(int key)
{

int action = getGameAction(key);
switch (action)
{

case UP:

form.append('Pressed UP arrow key");

APl Guide —v 0.9 ge 9 of 21

<2 SAMSUNG API Guide
mobile innovakor

Low Level External Interrupts

Interruptions such as incoming calls to a Java ME -application in a device invokes
hideNotify() and showN_otlfy() on any displaying ca,nvds i i

The showNotify() method is called prior to the Canvas actually being made‘ivmlble on
the display, and the hideNotify() method is called after the Canvas has been removed
from the display.

Graphics

Graphics object is used by the Canvas to do all 2D geometric rendering capability.
Rendering of Graphics can be done directly to the display or to an off-screen image
buffer.

e Graphics object aids to draw text, images, lines etc. Rectangles and arcs may also
be filled with a solid color. Rectangles may also be specified with rounded
corners.

API Guide —v 0.9 Page 10 of 21

— Sl

e A 24-bit color model is provided with 8 bits for each of red, green, and blue
components of a color. Not all devices support a full 24 bits worth of color and
thus they will map colors requested by the application into colors available on
the device.

e In the Display class, facilities are provided for obtaining device characteristics,
such as whether color is available and how many distinct gray levels are
available.

e With the help of Graphics object, you can draw images and create animation by
manipulating the pixel level. Rendering can be done directly to a screen or to an
off screen image buffer.

e Methods required for drawing content are: drawlmage() for drawing images,
drawLine() for drawing lines, drawString() for drawing strings.

e Co-ordinates represent pixel locations. The default coordinate system's origin is
at the upper left-hand corner of the destination. The X-axis direction is positive
towards the right, and the Y-axis direction is positive downwards. See figure 2.

(0,0)

getHeight()
¥-axis

il
.

R-axis
getWidth()

Figure 2: X-Y Co-ordinates

e The translate() method is used to change the origin of the coordinate system.

e The region of the screen where drawing takes effect can be further limited to a
rectangular area by the clipRect() method. Drawing outside the clip area will
have no effect. See figure 3.

APl Guide —v 0.9 Page 11 of 21

— Sl

Device Screen

Clipping Area

Figure 3: Clipping Region

With the help of the anchor points, you can draw the text. These anchor points are used
to minimize the amount of computation required when placing text. E.g., In order to
center a piece of text, an application needs to call stringWidth() or charWidth() to get the
width and perform a combination of subtraction and division to compute the proper
location.

How to call paint?

Java ME developer can create instance of Canvas class to call paint() method. We can
also call paint() asynchronously by repaint() method.

The call of the paint() method using repaint() is not performed immediately. It may be
delayed until the control flow returns from the current event handling method. Here
delay is not a problem, but while doing animation, the safest way to trigger repaints is to
use Display.callSerially() or to request the repaint from a separate Thread or
TimerTask. Alternatively, the application can force an immediate repaint by calling
serviceRepaints().

Applications can use either Display.callSerially() or serviceRepaints()to synchronize
with its paint() routine or they can code explicit synchronization into their paint()
routine.

APl Guide —v 0.9 Page 12 of 21

& SAMSUNG API Guide
mobile innovakor

Sample source code showing how to display a splash
screen using Canvas

This sample source code shows how to display a splash screen using Canvas:

Class: SplashMidlet.java

API Guide -v 0.9 Page 13 of 21

<2 SAMSUNG API Guide
mobile innovakor

Class SplashCanvas.java

API Guide -v 0.9 Page 14 of 21

- ol API Guide

API Guide -v 0.9 Page 15 of 21

— Sl

See figure 4. for the output of the above sample code once launched.

g=}
bile Innowator

Figure 4: Splash Screen

Click any key or after 4 seconds, output of the above sample code is seen as in figure 5.

Splash Screen over

Figure 5: Splash Screen over

APl Guide —v 0.9 Page 16 of 21

&8 ShmsuNG

mobile innovakor

Sample source code using Low Level API

Sample code given below demonstrates on how to use full Canvas and handle events

using low level APL

Class: CanvasMidlet.java

Page 17 of 21

API Guide —v 0.9

<2 SAMSUNG API Guide
mobile innovakor

Class: MainCanvas.java

API Guide -v 0.9 Page 18 of 21

<2 SAMSUNG API Guide
mobile innovakor

API Guide -v 0.9 Page 19 of 21

<2 SAMSUNG API Guide
mobile innovakor

API Guide -v 0.9 Page 20 of 21

<R SAMISUNG | Guide
mobile innovakor

}

break;

}
repaint();
}
}

Output of above sample code is seen in figure 6, with full screen and commands drawn
using Canvas.

Welcome to
Samsung Mobile Innovator
KeyFPressed

Figure 6: Initial Screen

Select soft Command text “Welcome to Samsung Mobile Innovator” is converted to
white color, key value and key name of the soft key is displayed as seen in figure 7.

KeyFressed
keyvalue=-6
keyname=50FT1

Figure 7: Key Events display

APl Guide —v 0.9 Page 21 of 21

