

Low Level UI Canvas
 Version 0.9, Draft

 API GUIDE

 API Guide

 COPYRIGHT

Samsung Electronics Co. Ltd.
This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law. Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.
All other company and product names may be trademarks of the respective companies
with which they are associated.

API Guide – v 0.9 Page 2 of 21

 API Guide

About this Document

This document describes how to implement low‐level UI with some sample code
snippets.

Scope

This document is intended for Java ME developers who wish to develop Java ME
applications. It assumes good knowledge of java programming language.
To know about Java ME basics and Java programming language, refer to the Knowledge
Base under Samsung Mobile Innovator (SMI).

 http://innovator.samsungmobile.com/platform.main.do?platformId=3

Document History:

Date Version Comment

22/06/09 0.9 Draft

References:

User Interface Programming‐ http://developers.sun.com/mobility/midp/articles/ui/‐

Abbreviations:

Java ME Java Micro Edition

MIDP Mobile Information Device Profile

API Application Programming Interface

API Guide – v 0.9 Page 3 of 21

http://innovator.samsungmobile.com/platform.main.do?platformId=3
http://developers.sun.com/mobility/midp/articles/ui/-

 API Guide

Table of Contents

Introduction... 5
Overview ... 6

Canvas... 6
Graphics .. 10

How to call paint?... 12
Sample source code showing how to display a splash screen using Canvas 13

Class: SplashMidlet.java... 13
Class SplashCanvas.java... 14

Sample source code using Low Level API.. 17
Class: CanvasMidlet.java.. 17
Class: MainCanvas.java.. 18

Table of Figures

Figure 1: UI Elements .. 5
Figure 2: X‐Y Co‐ordinates ... 11
Figure 3: Clipping Region ... 12
Figure 4: Splash Screen.. 16
Figure 5: Splash Screen over... 16
Figure 6: Initial Screen ... 21
Figure 7: Key Events display .. 21

API Guide – v 0.9 Page 4 of 21

 API Guide

Introduction

In Java ME application, MIDlet interaction with the user is done through UI element.
There are two ways to design UI elements as shown in Figure 1

• High Level API (Screen)

• Low Level API (Canvas)

High level API is used to achieve portability but one cannot get more control over its
look and feel. E.g., Visual appearance of the components cannot be defined. These visual
appearances may be shape, color or font etc.

Low‐level API is used in applications with precise control over graphic elements and
access to low level events. It provides methods to handle key events, game actions and
pointer events (if supported by the device). Low‐level API is used to draw images,
perform animations, scrolling, updating the display etc. It is mainly used for games
development and rich UI applications.

Figure 1: UI Elements

With the help of both APIs, Applications and Games for Samsung Handsets can be
developed. To know more about High Level API, please refer to the Samsung Innovator
> Java > Knowledge Base.

API Guide – v 0.9 Page 5 of 21

 API Guide

Overview

Low Level UI is mainly implemented by two classes present in javax.microedition.lcdui
package. Those are:

• Canvas

• Graphics

Canvas

Canvas is a base class for developing Java ME applications that need to handle low‐level
events and to issue graphics call for drawing to the display. Different methods are
provided by the Java ME developers to handle game actions, key events and pointer
events (if supported by the device). Methods are also provided to identify the device’s
capabilities and mapping of keys to game actions.

Adding Commands in Canvas

Like other subclasses of Displayable, the Canvas class allows the application to register a
listener for commands. Unlike other Displayables, however, the Canvas class requires
applications to subclass it in order to use it.

The sample code snippet shows how to add commands in Canvas:

public class CommandCanvas extends Canvas implements CommandListener{

 private CanvasMidlet midlet;
 private int width;
 private int height;
 private static final String EXIT = “Exit”;
 private static final String OK = “Ok”;
 private final Command CMD_EXIT=new Command(EXIT,Command.EXIT,0);
 private final Command CMD_OK=new Command(OK,Command.OK,1);

 public CommandCanvas(CanvasMidlet midlet){
 this.midlet=midlet;
 width=getWidth();
 height=getHeight();

 }

 public void paint(Graphics g){
 g.setColor(255,255,255);
 g.fillRect(0,0,width,height);
 this.addCommand(CMD_EXIT);
 this.setCommandListener(this);

API Guide – v 0.9 Page 6 of 21

 API Guide

 }

 public void commandAction(Command cmd,Displayable disp){
 if(cmd==cmdExit){
 midlet.notifyDestroyed();
 midlet.destroyApp(true);

 }
 }

}

Creating user interface using Low Level UI

Canvas is an abstract class. Application must be derived from the Canvas and
implement the paint() method to create a user interface using the low‐level APIs. paint()
method accepts a Graphics object, which provides methods for rendering on the device
screen.

The sample code snippet shows how to draw a string using paint() method:

 public class MainCanvas extends Canvas{
 public void paint(Graphics g){
 g.setColor(255,255,255);
 g.drawString(“SMI Java”,0,0,Graphics.TOP|Graphics.LEFT);
 }
}

Full screen using Canvas

There are two modes in which Canvas can be displayed.

• Normal mode ‐ In normal mode, space on the display may be occupied by

command labels, a title, and a ticker.

• Full Screen mode ‐ In Full Screen mode, the application is requesting that the

Canvas occupies as much of the display space as is possible.

Canvas objects are in normal mode by default. The normal mode and full‐screen mode is
controlled using setFullScreenMode(boolean) method.

Calling setFullScreenMode(boolean) may result in sizeChanged() being called. The
default implementation of this method does nothing. The application can override this
method to handle changes in size of available drawing area.

API Guide – v 0.9 Page 7 of 21

 API Guide
Canvas width and height can be found through the use of getWidth() and getHeight()
method. getWidth() returns the width of the canvas and getHeight() returns the height
of the canvas.

The sample code snippet below shows how to set full screen in canvas:

public class FullCanvas extends Canvas{
 public FullCanvas(){
 setFullScreenMode(true);
 }

 public void paint(Graphics g){
 g.setColor(0,0,245);
 g.fillRect(0, 0, getWidth(), getHeight());
 }

}

Low‐Level Event Handling

To monitor key events, a subclass of canvas must override one of these methods as
follows:

Method Name Description
protected void keyPressed(int
keycode)

This event is called when a physical key on the keypad
is pressed.

protected void keyReleased(int
keycode)

This event is called when a pressed key is released.

protected void keyRepeated(int
KeyCode)

This event is called when a key is held down. This
event may not be supported on all platforms. Support of
this method can be verified with a call to
hasRepeatEvents().

protected void
pointerPressed(int x, int y)

This event is called when a pointer is pressed. This
event may not be supported on all platforms. Support of
this method can be verified with a call to
hasPointerEvents().

protected void
pointerDragged(int x, int y)

This event is called when a pointer is dragged. This
event may not be supported on all platforms. Support of
this method can be verified with a call to
hasPointerMotionEvents().

protected void
pointerReleased(int x, int y)

This event is called when a pointer is released. This
event may not be supported on all platforms. Support
of this method can be verified with a call to
hasRepeatEvents().

API Guide – v 0.9 Page 8 of 21

 API Guide
keyRepeated is not necessarily available in all devices. The applications can check the
availability of repeat actions by calling the hasRepeatEvents() method of the Canvas.
hasRepeatEvents() returns true if the device supports keyRepeated functionality.

An integer code corresponding to the key to which the event pertains is passed as a
parameter in keyPressed, keyRepeated and keyReleased methods. It is important to
understand that key codes are likely to change between different manufacturer devices,
making key event handling another sensitive area of low‐level UI portability.

E.g., On device A, pressing LeftSoftKey on the keypad may come through as key code 21
but on device B the same key might come through as key code ‐6. Luckily, MIDP
provides tools to assist in normalizing key press events.

To make key handling generic across the devices, applications should use standard
keycodes defined by MIDP as shown in below code snippet.

public void keyPressed(int keycode)
{
 if (keycode == KEY_NUM0)
 {
 System.out.println(ʺPressed Key 0ʺ);
 } else if(keycode == KEY_NUM1){
 System.out.println(ʺPressed Key 1ʺ);
 } else if(keycode == KEY_NUM2){
 System.out.println(ʺPressed Key 2ʺ);
 }

}

There are portable applications, which need arrow key events and gaming‐related
events. These applications should use game actions in preference to key codes and key
names.
MIDP defines the following set of abstract key events: UP, DOWN, LEFT, RIGHT, FIRE,
GAME_A, GAME_B, GAME_C and GAME_D.

An application can get the mapping of the key events to abstract key events by calling
Canvas.getGameAction(int keycode) method as shown in sample code snippet below:

public void keyPressed(int key)
{
 int action = getGameAction(key);
 switch (action)
 {
 case UP:

 form.append(ʺPressed UP arrow keyʺ);

API Guide – v 0.9 Page 9 of 21

 API Guide
 break;

 case LEFT:

 form.append (ʺPressed LEFT arrow keyʺ);
 break;

 case GAME_B:

 form.append (ʺPressed GAME_B keyʺ);
 break;

 }
}

Low Level External Interrupts

Interruptions such as incoming calls to a Java ME application in a device invokes
hideNotify() and showNotify() on any displaying canvas.

The showNotify() method is called prior to the Canvas actually being made visible on
the display, and the hideNotify() method is called after the Canvas has been removed
from the display.

 /*called when an interrupt such as incoming call is received*/

protected void hideNotify() {

}

/*called when an interrupt such as incoming call is ended*/

protected void showNotify() {

}

Graphics

Graphics object is used by the Canvas to do all 2D geometric rendering capability.
Rendering of Graphics can be done directly to the display or to an off‐screen image
buffer.

• Graphics object aids to draw text, images, lines etc. Rectangles and arcs may also
be filled with a solid color. Rectangles may also be specified with rounded
corners.

API Guide – v 0.9 Page 10 of 21

 API Guide
• A 24‐bit color model is provided with 8 bits for each of red, green, and blue

components of a color. Not all devices support a full 24 bits worth of color and
thus they will map colors requested by the application into colors available on
the device.

• In the Display class, facilities are provided for obtaining device characteristics,
such as whether color is available and how many distinct gray levels are
available.

• With the help of Graphics object, you can draw images and create animation by
manipulating the pixel level. Rendering can be done directly to a screen or to an
off screen image buffer.

• Methods required for drawing content are: drawImage() for drawing images,
drawLine() for drawing lines, drawString() for drawing strings.

• Co‐ordinates represent pixel locations. The default coordinate systemʹs origin is
at the upper left‐hand corner of the destination. The X‐axis direction is positive
towards the right, and the Y‐axis direction is positive downwards. See figure 2.

Figure 2: X‐Y Co‐ordinates

• The translate() method is used to change the origin of the coordinate system.

• The region of the screen where drawing takes effect can be further limited to a
rectangular area by the clipRect() method. Drawing outside the clip area will
have no effect. See figure 3.

API Guide – v 0.9 Page 11 of 21

 API Guide

Figure 3: Clipping Region

With the help of the anchor points, you can draw the text. These anchor points are used
to minimize the amount of computation required when placing text. E.g., In order to
center a piece of text, an application needs to call stringWidth() or charWidth() to get the
width and perform a combination of subtraction and division to compute the proper
location.

How to call paint?

Java ME developer can create instance of Canvas class to call paint() method. We can
also call paint() asynchronously by repaint() method.

The call of the paint() method using repaint() is not performed immediately. It may be
delayed until the control flow returns from the current event handling method. Here
delay is not a problem, but while doing animation, the safest way to trigger repaints is to
use Display.callSerially() or to request the repaint from a separate Thread or
TimerTask. Alternatively, the application can force an immediate repaint by calling
serviceRepaints().

Applications can use either Display.callSerially() or serviceRepaints()to synchronize
with its paint() routine or they can code explicit synchronization into their paint()
routine.

API Guide – v 0.9 Page 12 of 21

 API Guide

Sample source code showing how to display a splash
screen using Canvas

This sample source code shows how to display a splash screen using Canvas:

Class: SplashMidlet.java

import javax.microedition.lcdui.Display;
import javax.microedition.midlet.MIDlet;

public class SplashMidlet extends MIDlet {

 /*current display object*/
 private Display display;

 /*object for displaying canvas screen*/
 private SplashCanvas canvas;

 /* midlet constructor*/
 public SplashMidlet() {
 display = Display.getDisplay(this);
 /*initializing the SplashCanvas class*/
 canvas = new SplashCanvas(this);
 }

 /*called when the midlet is called for first time*/
 public void startApp() {
 display.setCurrent(canvas);
 }

 /*called when any interrupt occurs and can handle the player*/
 public void pauseApp() {
 /*can write code here for handling all interrupts
 and for unhandled garbage collections*/
 }

 /*is used to destroy the Midlet cleanup all that are not
 handled by garbage collection*/
 public void destroyApp(boolean unconditional) {
 }
 /*This method is used to exit the midlet*/
 public void exitMidlet() {
 destroyApp(true);
 notifyDestroyed();
 }
}

API Guide – v 0.9 Page 13 of 21

 API Guide
Class SplashCanvas.java

import javax.microedition.lcdui.Canvas;
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Font;
import javax.microedition.lcdui.Graphics;

public class SplashCanvas extends Canvas implements Runnable, CommandListener {

 /*to create midlet object*/
 private SplashMidlet midlet;
 /*int object to get width of the screen*/
 private int width;
 /*int object to get width of the screen*/
 private int height;
 /*boolean object*/
 private boolean remSplash = false;
 /*this command is used to exit from the current application*/
 private final Command cmdExit = new Command(ʺExitʺ, Command.EXIT,
 2);
 /*font object*/
 private Font font = null;

 public SplashCanvas(SplashMidlet midlet) {
 this.midlet = midlet;
 /*initializes the font to be displayed*/
 font = Font.getFont(Font.FACE_SYSTEM, Font.STYLE_PLAIN,
 Font.SIZE_MEDIUM);
 /*need to start the thread or timer to make splash screen remain
 for some time*/
 new Thread(this).start();
 setCommandListener(this);
 }

 public void paint(Graphics g) {
 /*gets the width of the screen*/
 width = getWidth();
 /*gets the height of the screen*/
 height = getHeight();
 /*sets the font property*/
 g.setFont(font);
 g.setColor(255, 255, 255);
 g.fillRect(0, 0, width, height);
 g.setColor(0, 0, 255);
 g.drawString(ʺSplash Screen overʺ, width / 2, height / 2,

API Guide – v 0.9 Page 14 of 21

 API Guide
 Graphics.HCENTER | Graphics.BASELINE);
 /*code to show splash screen*/
 if (!remSplash) {
 g.setColor(0, 0, 255);
 g.fillRect(0, 0, width, height);
 g.setColor(255, 255, 255);
 g.drawString(ʺWelcome to ʺ, width / 2, height / 2,
 Graphics.HCENTER | Graphics.BASELINE);
 g.drawString(ʺSamsung Mobile Innovatorʺ, width / 2, (height / 2) +
 font.getHeight(), Graphics.HCENTER | Graphics.BASELINE);
 }
 }

 public void run() {
 synchronized (this) {
 try {
 /*Spash Screen appears for 4 sec*/
 wait(4000L);

 } catch (InterruptedException ie) {
 ie.printStackTrace();
 }
 }
 exitSplash();
 }

 public void commandAction(Command cmd, Displayable disp) {
 if (cmd == cmdExit) {
 midlet.exitMidlet();
 }
 }

 /*to exit from the splash screen*/
 public void exitSplash() {
 remSplash = true;
 addCommand(cmdExit);
 repaint();
 }

 public void keyPressed(int keycode) {
 if (!remSplash) {
 exitSplash();
 }
 }
}

API Guide – v 0.9 Page 15 of 21

 API Guide
 See figure 4. for the output of the above sample code once launched.

Figure 4: Splash Screen

Click any key or after 4 seconds, output of the above sample code is seen as in figure 5.

Figure 5: Splash Screen over

API Guide – v 0.9 Page 16 of 21

 API Guide

Sample source code using Low Level API

Sample code given below demonstrates on how to use full Canvas and handle events
using low level API.

Class: CanvasMidlet.java

import javax.microedition.lcdui.Display;
import javax.microedition.midlet.MIDlet;

public class CanvasMidlet extends MIDlet {
 /*current display object*/
 Display display;
 /*object for displaying canvas screen*/
 MainCanvas canvas;

 public CanvasMidlet(){
 display=Display.getDisplay(this);
 /*initializing the MainCanvas class*/
 canvas=new MainCanvas(this);
 }

 /*called when the midlet is called for first time*/
 public void startApp() {
 display.setCurrent(canvas);
 }

 /*called when any interrupt occurs and can handle the player*/
 public void pauseApp() {
 /*can write code here for handling all interrupts
 and for unhandled garbage collections*/
 }

 /*is used to destroy the Midlet cleanup all that are not
 handled by garbage collection*/
 public void destroyApp(boolean unconditional) {
 }

 /*This method is used to exit the midlet*/
 public void exitMidlet(){
 destroyApp(true);
 notifyDestroyed();
 }
}

API Guide – v 0.9 Page 17 of 21

 API Guide
Class: MainCanvas.java

import javax.microedition.lcdui.Canvas;
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Font;
import javax.microedition.lcdui.Graphics;

public class MainCanvas extends Canvas implements CommandListener {

 /*to create midlet object*/
 CanvasMidlet midlet;
 /*int object to get width of the screen*/
 int width;
 /*int object to get width of the screen*/
 int height;
 /*this command is used to exit from the current application*/
 private final Command cmdExit = new Command(ʺExitʺ, Command.EXIT,
 2);
 /*this command is used to select an event*/
 private final Command cmdSelect = new Command(ʺSelectʺ,
 Command.OK, 2);
 /*left command object added at left side*/
 private Command leftCommand = null;
 /*right command object added at right side*/
 private Command rightCommand = null;
 /*font object*/
 private Font font = null;
 /*boolean object*/
 private boolean selected;
 /*object to get keyvalue*/
 private String keyvalue = null;
 /*object to get keyname*/
 private String keyname = null;

 public MainCanvas(CanvasMidlet midlet) {
 this.midlet = midlet;
 /*to use full screen of the device for displaying*/
 setFullScreenMode(true);
 /*gets the width of the screen*/
 width = getWidth();
 /*gets the height of the screen*/
 height = getHeight();
 /*initializes the font to be displayed*/
 font = Font.getDefaultFont();
 addCommand(cmdExit, 1);

API Guide – v 0.9 Page 18 of 21

 API Guide
 addCommand(cmdSelect, 0);
 }

 public void showNotify() {
 /*can write code to resume the application*/
 }

 public void hideNotify() {
 /*can write code here for handling all interrupts
 and for unhandled garbage collections*/
 }

 /*to draw Commands on the screen*/
 public void drawCommands(Graphics g) {
 g.setColor(0, 0, 0);
 if (leftCommand != null && leftCommand.getLabel().equals(ʺSelectʺ)) {
 g.drawString(ʺSelectʺ, 0, (height ‐ font.getHeight() ‐ 1), 0);
 }

 if (rightCommand != null && rightCommand.getLabel().equals(ʺExitʺ))
 {
 g.drawString(ʺExitʺ, (width – font.stringWidth(ʺExitʺ) – 1), (height –
 font.getHeight()– 1), 0);
 }
 }

 /*to add commands*/
 public void addCommand(Command cmd, int pos) {
 if (pos == 0) {
 leftCommand = cmd;
 } else {
 rightCommand = cmd;
 }
 }

 public void paint(Graphics g) {
 g.setColor(138, 237, 244);
 g.fillRect(0, 0, width, height);
 /*sets the font property*/
 g.setFont(font);
 /*condition to display font color on clicking Select button*/
 if (selected) {
 g.setColor(255, 255, 255);
 } else {
 g.setColor(0, 0, 255);
 }
 g.drawString(ʺWelcome to ʺ, width / 2,0, Graphics.HCENTER |
 Graphics.TOP);

API Guide – v 0.9 Page 19 of 21

 API Guide
 g.drawString(ʺSamsung Mobile Innovatorʺ, width /
 2,font.getHeight(),Graphics.HCENTER | Graphics.TOP);
 g.setColor(0,0,0);
 g.drawString(ʺKeyPressedʺ, width / 2, font.getHeight()*2,
 Graphics.HCENTER | Graphics.TOP);

 if (keyvalue != null) {
 g.drawString(ʺkeyvalue=ʺ+keyvalue, width /
 2,font.getHeight()*3,Graphics.HCENTER | Graphics.TOP);
 }
 if (keyname != null) {
 g.drawString(ʺkeyname=ʺ+keyname, width /
 2,font.getHeight()*4,Graphics.HCENTER | Graphics.TOP);
 }

 drawCommands(g);
 }

 public void commandAction(Command cmd, Displayable disp) {
 if (cmd == cmdExit) {
 midlet.exitMidlet();
 } else if (cmd == cmdSelect) {
 if (selected) {
 selected = false;
 } else {
 selected = true;
 }
 repaint();
 }
 }

 public void keyPressed(int keycode) {
 /*get keycode value to a string variable*/
 keyvalue = Integer.toString(keycode);
 /*get key names*/
 keyname=getKeyName(keycode);

 switch (keycode) {
 case ‐7:
 /*to handle the event of right softkey*/
 if (rightCommand != null) {
 commandAction(rightCommand, this);
 }
 break;
 case ‐6:
 /*to handle the event of left softkey*/
 if (leftCommand != null) {
 commandAction(leftCommand, this);

API Guide – v 0.9 Page 20 of 21

API Guide – v 0.9 Page 21 of 21

API Guide
 }
 break;
 }
 repaint();
 }
}

Output of above sample code is seen in figure 6, with full screen and commands drawn
using Canvas.

Figure 6: Initial Screen

Select soft Command text “Welcome to Samsung Mobile Innovator” is converted to
white color, key value and key name of the soft key is displayed as seen in figure 7.

Figure 7: Key Events display

