

Mobile Media API
 Version 0.9, Draft

API GUIDE

 API Guide

COPYRIGHT

Samsung Electronics Co. Ltd.
This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.
All other company and product names may be trademarks of the respective companies
with which they are associated.

Mobile Media API – v 0.9 Page 2 of 17

 API Guide

About This Document

This document will cover in brief about MMAPI (Mobile Media API) for Samsung
specific devices. It contains overview and Architecture of MMAPI, followed by a Sample
code on how to play audio and video.

 Scope:

This document is intended for MIDP developers who wish to develop Java ME
applications. It assumes good knowledge of java programming language.

Document History:

Date Version Comment

05/02/09 0.9 Draft

References:

1. MMAPI Specification:

http://jcp.org/en/jsr/detail?id=135

2. MMAPI Overview:

 http://developers.sun.com/mobility/midp/articles/mmapioverview/

Abbreviations:

Java ME Java Micro Edition
CLDC Connection Limited Device Configuration
MIDP Mobile Information Device Profile
JSR Java Specification Request
RMS Record Management System

JAR Java Application Archive

Mobile Media API – v 0.9 Page 3 of 17

http://jcp.org/en/jsr/detail?id=135
http://developers.sun.com/mobility/midp/articles/mmapioverview/

 API Guide

Table of Contents

Introduction... 5

MMAPI Overview.. 5

Protocol Handling.. 5

Content Handling .. 5

Player’s life cycle .. 7

Mobile Media API Description... 9

Playing audio and video using MMAPI ... 9

Playing audio.. 9

Playing Video.. 10

Sample Code snippet for audio .. 10

Sample Code snippet for video .. 14

Table of Figures

Figure 1: Data Handling .. 5

Figure 2: MMAPI architecture .. 6

Figure 3: Player Life Cycle .. 7

Mobile Media API – v 0.9 Page 4 of 17

 API Guide

Introduction

The Mobile Media API (MMAPI) supports multimedia applications for Java ME enabled
devices. This is an optional package. MMAPI enables MIDlet to play video, take pictures,
play and record audio.

MMAPI Overview

There are two parts of multimedia processing in MMAPI. They are:

 Protocol Handling

 Content Handling

Protocol Handling

This refers to reading data from a source such as file or streaming server into a media‐
processing system.

Content Handling

This refers to rendering media data on a device by parsing or decoding/encoding. There
are two high level objects in MMAPI, which encapsulate both the handling data using
the protocol and the content. See Figure 1.

Figure 1: Data Handling

Mobile Media API – v 0.9 Page 5 of 17

 API Guide

Data Source for protocol handling

javax.microedition.media.protocol.DataSource for protocol handling allows the user to
access the data for processing. Data source hides the details of how the data is being
read from the source whether it may be from file, streaming server or proprietary
delivery mechanism.

Player for content handling

javax.microedition.media.Player provides methods to manage the player’s life cycle. It
reads the data from the DataSource, processes it and renders it to the output device. It
controls the playback progress, obtains the presentation component, controls and
provides the means to synchronize with other players. Player also provides some type‐
specific controls to access features for specific media types.
Player can be created from javax.microedition.media.Manager, factory mechanism class,
which provides access to set methods for creating Player.

The overall architecture of MMAPI is shown in Figure 2.

Figure 2: MMAPI architecture

Data source gets the media data from source such as File or Server to a Player.

Usually Using factory mechanism class Manager creates Player from DataSource, and also
from InputStream. Player interprets media data and can use controls (such as
VolumeContol, VideoControl, ToneContol) to modify the behavior of a player.

Mobile Media API – v 0.9 Page 6 of 17

Mobile Media API – v 0.9 Page 7 of 17

API Guide

Player’s life cycle

Player’s life cycle consists of five states:

UNREALIZED
REALIZED,
PREFETCHED
STARTED
CLOSED

Player class contains six methods for controlling transitions:

 realize()
 prefetch()
 start()
 stop()
 deallocate()
 close()

Figure 3 shows the transitions and life cycle states.

Figure 3: Player Life Cycle

 API Guide

UNREALIZED State

When a player is created, it is in the UNREALIZED state. An unrealized Player does not
have enough information to acquire all the resources it needs to function.

REALIZED State

Calling realize() moves it from UNREALIZED to the REALIZED state and initializes the
information that player needs to acquire media resources. The only way to reach back
UNREALIZED state is if deallocate() is invoked before REALIZED state is completed.

A Player is in the REALIZED state when it has obtained the information required to
acquire the media resources.

Once a Player reaches the REALIZED state, it remains in one of the four states:
REALIZED, PREFETCHED, STARTED or CLOSED. Player never returns to the
UNREALIZED state.

PREFETCHED State

Even after reaching REALIZED state, player still needs to perform a number of
potentially time‐consuming tasks before it is ready to be started.

For example, it may need to acquire exclusive resources, fill buffers with media data,
perform other start‐up processing, establishes network connections for streaming data,
or performs other initialization tasks.

Calling prefetch() moves it to PREFETCHED state from REALIZED state. Once a Player
is in the PREFETCHED state, it may be started by calling start() method. Player returns
to the PREFETCHED state when player stops playing or it has reached end of media.
stop() causes the player to stop playing and return to PREFETCHED state.

STARTED State

STARTED state indicates, Player is running and processing data. Calling start() causes
player transition to the STARTED state from PREFETCHED state, where the player can
start processing data.

When the Player moves from the PREFETCHED to the STARTED state, it posts a
STARTED event.

When it moves from the STARTED state to the PREFETCHED state, it posts a STOPPED,
END_OF_MEDIA or STOPPED_AT_TIME event depending on the reason it stopped.

Mobile Media API – v 0.9 Page 8 of 17

 API Guide

CLOSED state

In the CLOSED state, Player has released most of its resources and same Player object
must not be used again.
Calling close() method from UNREALIZED, REALIZED, PREFETCHED, and STARTED
states moves the Player to CLOSED state.

Mobile Media API Description

There are three packages in MMAPI

1. javax.microedition.media:

This package contains some Interfaces, MediaException and Manager class.

2. javax.microedition.media.control:

This package contains all Interfaces specific to control types such as VolumeContol,
VideoControl and ToneControl.

3. javax.microedition.media.protocol:

This package contains one interface and two classes for protocol handling like
DataSource class, which is abstraction for media‐control handler.

 Playing audio and video using MMAPI

Playing audio

Content can be read from Server, JAR, File System and/or RMS to play it on the device.
The following example shows reading of an Audio file from JAR. Sample code snippets
for playing audio and video are given at the end of this document.

Read the Audio file from the resource by creating InputStream as follows:

/*Read audio file from resource */
InputStream inputStream = getClass().getResourceAsStream(“/music.mid”);

After reading data successfully from JAR, create a player with input as InputStream and
content type of the Audio file.

Player player = Manager.createPlayer(inputStream, ʺaudio/midiʺ);

setLoopCount(int count) method sets the number of times the Player will loop and play
the content. By passing parameter as ‐1 to setLoopCount() leads to infinite playback.

Mobile Media API – v 0.9 Page 9 of 17

 API Guide

player.setLoopCount(‐1);

Then initialize the player by calling following method as follows.

player.realize();

Move the player to the PREFETCHED state.

player.prefetch();

Set the player for listening events.

player.addPlayerListener(this);

Start playing audio by using following method.

player.start();

Playing Video

Follow the same procedure of audio till setting a listener for a player and get the video
control object through which video can be displayed in the Form as an Item.

VideoControl videoControl = (VideoControl) Player.getControl(ʺVideoControlʺ);
if (videoControl != null) {

 Item videoItem = (Item)
 videoControl.initDisplayMode(VideoControl.USE_GUI_PRIMITIVE, null);
 append(videoItem);

}

Start playing Video by using following method.

player.start();

Sample Code snippet for audio

The example of MIDlet classes below shows how to play audio and video using MMAPI.

This AudioMIDlet is a sample class to play audio as follows:

Mobile Media API – v 0.9 Page 10 of 17

 API Guide

Class: AudioMidlet.java

import java.io.InputStream;

import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;
import javax.microedition.lcdui.StringItem;
import javax.microedition.media.Manager;
import javax.microedition.media.MediaException;
import javax.microedition.media.Player;
import javax.microedition.media.PlayerListener;
import javax.microedition.midlet.MIDlet;

public class AudioMidlet extends MIDlet implements CommandListener,
 PlayerListener, Runnable {

 private static final String EXIT = ʺExitʺ;
 private static final String PAUSE = ʺPauseʺ;
 private static final String PLAY = ʺPlayʺ;
 private Display display;
 private Form playerForm;
 private Thread thread;
 private Player player;
 private StringItem curStatus;

 /*this command is used to exit from the current application*/
 private final Command cmdExit = new Command(EXIT, Command.EXIT, 2);
 /*this command is used to bring the player in pause state*/
 private final Command cmdPause = new Command(PAUSE, Command.ITEM, 1);
 /*this command is used to play the player*/
 private final Command cmdPlay = new Command(PLAY, Command.ITEM, 1);

 public AudioMidlet() {
 display = Display.getDisplay(this);
 playerForm = new Form(ʺMMAPI Audioʺ);
 initAudio();
 curStatus = new StringItem(ʺPlayer Status:ʺ, ʺReading Contentʺ);
 playerForm.append(curStatus);
 playerForm.addCommand(cmdExit);
 playerForm.addCommand(cmdPause);
 playerForm.setCommandListener(this);

 }

Mobile Media API – v 0.9 Page 11 of 17

 API Guide

 public void startApp() {
 display.setCurrent(playerForm);
 }

 public void pauseApp() {
 /*all interupts can be handled here*/
 }

 public void destroyApp(boolean unconditional) {
 playerClose();
 }

 public void exitMidlet() {
 destroyApp(true);
 notifyDestroyed();
 }

 public void initAudio() {
 /*recomeneded to start the players in a separate thread*/
 thread = new Thread(this);
 thread.start();
 }

 public void run() {
 try {
 /*gets the content from the JAR as a resource stream data*/
 InputStream inputStream =
 getClass().getResourceAsStream(ʺ/piano.midʺ);
 /*create a player object*/
 player = Manager.createPlayer(inputStream, ʺaudio/midiʺ);
 /*this is used to set the loop count, here ‐1 is indefinite*/
 player.setLoopCount(‐1);
 player.realize();
 player.prefetch();
 player.addPlayerListener(this);
 } catch (Exception ex) {
 if (player != null) {
 player.close();
 player = null;
 }
 System.err.println(ʺProblem creating playerʺ + ex);
 }

 startPlayer();

 }

Mobile Media API – v 0.9 Page 12 of 17

 API Guide

 /*this method will responds to the player events*/
 public void playerUpdate(Player plyr, String evt, Object evtData) {
 if (evt == STARTED) {
 curStatus.setText(ʺStarted Playing Audioʺ);
 } else if (evt == STOPPED) {
 curStatus.setText(ʺStopped Playing Audioʺ);
 } else if (evt == CLOSED) {
 curStatus.setText(ʺClosed Playing Audioʺ);
 }
 }

 public void commandAction(Command cmd, Displayable disp) {
 if (cmd == cmdPause && disp == playerForm) {
 playerPause();
 playerForm.removeCommand(cmdPause);
 playerForm.addCommand(cmdPlay);
 } else if (cmd == cmdExit && disp == playerForm) {
 exitMidlet();
 } else if (cmd == cmdPlay && disp == playerForm) {
 playerForm.removeCommand(cmdPlay);
 playerForm.addCommand(cmdPause);
 startPlayer();
 }
 }

 public void startPlayer() {
 if (player != null) {
 try {
 player.start();
 } catch (MediaException me) {
 System.err.println(me);
 } catch (Exception ex) {
 System.err.println(ex);
 }
 }
 }

 public void playerPause() {
 if (player != null) {
 try {
 player.stop();
 } catch (MediaException me) {
 System.err.println(me);
 }
 }
 }

Mobile Media API – v 0.9 Page 13 of 17

 API Guide

 public void playerClose() {
 synchronized (this) {
 playerPause();
 if (player != null) {
 player.close();
 player = null;
 }
 }
 }
}

Sample Code snippet for video

The sample code given below shows how to play video using MMAPI.

Class: VideoMidlet.java

import java.io.InputStream;

import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;
import javax.microedition.lcdui.Item;
import javax.microedition.lcdui.StringItem;
import javax.microedition.media.Manager;
import javax.microedition.media.MediaException;
import javax.microedition.media.Player;
import javax.microedition.media.PlayerListener;
import javax.microedition.media.control.VideoControl;
import javax.microedition.midlet.MIDlet;

public class VideoMidlet extends MIDlet implements CommandListener,
 PlayerListener, Runnable {

 private static final String EXIT = ʺExitʺ;
 private static final String PAUSE = ʺPauseʺ;
 private static final String PLAY = ʺPlayʺ;
 private Display display;
 private Form playerForm;
 private Thread thread;
 private Player player;
 private StringItem curStatus;

Mobile Media API – v 0.9 Page 14 of 17

 API Guide

 /*this command is used to exit from the current application*/
 private final Command cmdExit = new Command(EXIT, Command.EXIT, 2);
 /*this command is used to bring the player in pause state*/
 private final Command cmdPause = new Command(PAUSE, Command.ITEM, 1);
 /*this command is used to play the player*/
 private final Command cmdPlay = new Command(PLAY, Command.ITEM, 1);

 public VideoMidlet() {
 display = Display.getDisplay(this);
 playerForm = new Form(ʺMMAPI Videoʺ);
 initAudio();
 curStatus = new StringItem(ʺPlayer Status:ʺ, ʺReading Contentʺ);
 playerForm.append(curStatus);
 playerForm.addCommand(cmdExit);
 playerForm.addCommand(cmdPause);
 playerForm.setCommandListener(this);
 }

 public void startApp() {
 display.setCurrent(playerForm);
 }

 public void pauseApp() {
 /*all interupts can be handled here*/
 }

 public void destroyApp(boolean unconditional) {
 }

 public void exitMidlet() {
 destroyApp(true);
 notifyDestroyed();
 }

 public void initAudio() {
 /*recomeneded to start the players in a separate thread*/
 thread = new Thread(this);
 thread.start();
 }

 public void run() {
 try {
 /*gets the content from the JAR as a resource stream data*/
 InputStream inputStream = getClass().getResourceAsStream(ʺ/video.mpgʺ);
 /*creates a player object from Manager by using factory mechanism*/
 player = Manager.createPlayer(inputStream, ʺvideo/mpegʺ);
 player.realize();

Mobile Media API – v 0.9 Page 15 of 17

 API Guide

 player.prefetch();
 player.addPlayerListener(this);
 VideoControl videoControl =
 (VideoControl) player.getControl(ʺVideoControlʺ);
 if (videoControl != null) {
 Item videoItem = (Item)
 videoControl.initDisplayMode(VideoControl.USE_GUI_PRIMITIVE, null);
 playerForm.append(videoItem);
 }
 } catch (Exception ex) {
 if (player != null) {
 player.close();
 player = null;
 }
 System.err.println(ʺProblem creating playerʺ + ex);
 }
 startPlayer();
 }

 public void commandAction(Command cmd, Displayable disp) {
 if (cmd == cmdPause && disp == playerForm) {
 playerPause();
 playerForm.removeCommand(cmdPause);
 playerForm.addCommand(cmdPlay);
 } else if (cmd == cmdExit && disp == playerForm) {
 exitMidlet();
 } else if (cmd == cmdPlay && disp == playerForm) {
 playerForm.removeCommand(cmdPlay);
 playerForm.addCommand(cmdPause);
 startPlayer();
 }
 }

 /*this method will responds to the player events*/
 public void playerUpdate(Player plyr, String evt, Object evtData) {
 if (evt == STARTED) {
 curStatus.setText(ʺStarted Playing Videoʺ);
 } else if (evt == STOPPED) {
 curStatus.setText(ʺStopped Playing Videoʺ);
 } else if (evt == CLOSED) {
 curStatus.setText(ʺClosed Playing Videoʺ);
 }
 if (evt == END_OF_MEDIA) {
 try {
 player.setMediaTime(0);
 player.start();
 } catch (MediaException me) {

Mobile Media API – v 0.9 Page 16 of 17

Mobile Media API – v 0.9 Page 17 of 17

API Guide

 System.err.println(me);
 }
 }
 }

 public void startPlayer() {
 if (player != null) {
 try {
 player.start();
 } catch (Exception ex) {
 System.out.println(ʺError in starting a player=ʺ + ex);
 }
 }
 }

 public void playerPause() {
 if (player != null) {
 try {
 player.stop();
 } catch (MediaException me) {
 System.err.println(me);
 }
 }
 }

 public void playerClose() {
 synchronized (this) {
 playerPause();
 if (player != null) {
 player.close();
 player = null;
 }
 }
 }
}

