[image: image1.jpg]aSI\MSUNG

mobile innovakor

[image: image20.jpg]¢Q SNAMSUNG

Sensor API

 Version 0.9, Draft

[image: image21.png]O\ SI\MSUNG

W mobile inn

JSR 256
COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions, use or disclosure of this material, or any part thereof, is strictly prohibited and is a violation under the Copyright Law. Samsung Electronics reserves the right to make changes in specifications at any time and without notice. The information furnished by Samsung Electronics in this material is believed to be accurate and reliable, but is not warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of Sun Microsystems.

All other company and product names may be trademarks of the respective companies with which they are associated.

About This Document

This document describes JSR 256 Sensor API followed by a sample code.

Scope
This document is for the users who have knowledge of Java ME and need a brief introduction to JSR 256.

Document History

	Date
	Version
	Comment

	02/06/09
	0.9
	Draft

References

· Sensor API JSR:

·
"

http://jcp.org/en/jsr/detail?id=256

·
Sensor API Article:
 http://developers.sun.com/mobility/apis/articles/opengles_mobilesensor/
Abbreviations

	MIDP
	Mobile Information Device Profile

	CLDC
	Connected Limited Device Configuration

	AMS
	Application Management Software

	JSR
	Java Specification Request

	GCF
	Generic Connection Framework

	API
	Application Programming Interface

	URL
	Uniform Resource Locator

Table of Contents
5Introduction

5Overview

6Use Cases of Sensor

6API Description

6javax.microedition.sensor

8javax.microedition.sensor.control

8Sensor

8Sensor Detection

12Monitoring Sensor

13Creating Connection

13Data Capture

14Synchronous Data

15Asynchronous Data

16Adding Conditions

16LimitCondition

16RangeCondition

17ObjectCondition

17Sensor Deactivation

18Detecting Sensor API’s presence

18Security & Permissions

18Private Sensor

18Protected Sensor

19Public Sensor

19PushRegistry

19Availability-based push

20Condition-based push

20Sensor Example

20Class: SensorMIDlet

24Class: SensorCanvas

List of Tables
7Table 1: Sensor Package Interface Information

8Table 2: Sensor Package Class Information

8Table 3: Control Package Interface Information

10Table 4: Examples of defining sensors with quantity and context type

19Table 5: Permissions

Introduction

JSR 256 Mobile Sensor API allows Java ME application to fetch data easily and uniformly from sensors. Sensor API does not provide any methods for controlling the sensors. The API offers unified way of managing sensors, connected to the mobile devices, and easy access to the sensor data.
The API is targeted to the resource-constrained devices and needs to be memory-efficient to run.
The API is designed as an Optional Package that can be used with many Java Micro Edition Profiles. The minimum platform required by the API is, Connected Limited Device Configuration (CLDC), version 1.1.
Overview

A sensor is any measurement data source. Sensors are of different types:

· Physical sensors such as magnetometers and accelerometers.

· Virtual sensors such as battery level sensor combine and manipulate the data they receive from other kinds of physical sensors. Battery level sensor indicates the left over charge in a battery.
Use Cases of Sensor
Sensors can be widely used for the following scenarios:
· Gaming: Device itself acts as a game control providing motion related input modalities.
· Better usability of a device: Improves accessibility and usability of device such as change in display backlight, display orientation.

· Monitor health condition: Monitors the user heart rate, body temperature etc.

· Outdoor activities: Supports step counter etc.
· Monitor external conditions: Air pressure, temperature, wind and humidity.
API Description

The JSR 256 API is split into two parts:
· javax.microedition.sensor
· javax.microedition.sensor.control
javax.microedition.sensor

The package javax.microedition.sensor is a mandatory package and provides API for receiving the information from a sensor.
It contains 6 classes and 10 interfaces.
The following table shows the interface and classes.

Table 1: Sensor Package Interface Information

	Interface
	Description

	Channel
	Provides information about the channel and maintain conditions for monitoring the data.

	ChannelInfo
	Provides information about the data properties of the channel.

	Condition
	Sets condition to monitor data and receives notification when data meets defined condition

	ConditionListener
	Provides notifications when monitored data meets the condition defined by the application.

	Data
	Represents data values retrieved from one channel of a sensor.

	DataAndErrorListener
	Implemented by the application to receive data and errors from the sensor.

	DataListener
	Implemented by the application to receive data from the sensor.

	SensorConnection
	Abstraction of an actual sensor

	SensorInfo
	Contains a variety of information about the physical sensor.

	SensorListener
	Represents a listener that receives notifications when the availability of the sensor changes.

Table 2: Sensor Package Class Information

	Class
	Description

	LimitCondition
	Condition intended for numeric data to set various kind of conditions.

	MeasurementRange
	Represents the measurement range of one channel of the sensor.

	ObjectCondition
	Checks the equality of the set limit to the measured data value.

	RangeCondition
	Checks if the measured data value is within the defined range.

	SensorManager
	Used to find sensors and monitor their availability.

	Unit
	Represents the unit of the measured data values.

javax.microedition.sensor.control
The package javax.microedition.sensor.control is an optional package that represents examples of possible controls like starting, stopping, calibrating, and setting a measurement range or accuracy, and provides an interface for implementing new controls. It contains 6 interfaces. Table 3 shows the interfaces.
Table 3: Control Package Interface Information

	Interface
	Description

	Control
	Represents a sensor control enabling the sensor's control.

	Controllable
	Represents a sensor which can be controlled with the controls provided.

	MeasurementRangeControl
	Example of a general control used to set the measurement range of the sensor.

	SampleRateControl
	Example of a general control used to set the sample rate of the sensor.

	StartControl
	Example of a general control used to start the sensor by calling its execute() method.

	StopControl
	StopControl object is an example of a general control used to stop the sensor by calling its execute() method.

Sensor
The application that wishes to utilize sensor data typically performs following operations with a sensor:

· Sensor detection (Discovery)

· Sensor activation (Connection, Monitoring)
· Data capture (Listener, Condition)
· Sensor deactivation
Sensor Detection
The main functionality of Mobile Sensor API is to fetch the sensor data and monitor it based on a set of conditions. The appropriate sensor has to be found or known beforehand in order to use. An application can search for a desired sensor based on quantity and context type.
The quantity is the property the sensor is measuring.
The context type represents the environment where the measurement is taken, such as "ambient" or "device".
Context type categorizes sensors into four groups:

· Ambient: sensors measuring some ambient property of the environment.
· Device: sensors measuring properties related to the device.
· User: sensors measuring some function of the user.
· Vehicle: sensors measuring properties related to a vehicle.
The application can use either one independently or specify both.
To help the user to find the sensor, some readymade combinations and the sensor following from the definition, are presented in table 4.
Table 4: Examples of defining sensors with quantity and context type

	Sensor
	Quantity
	Context type

	accelerometer
	acceleration
	user

	alcometer
	alcohol
	user

	altimeter
	altitude
	user

	ambient light sensor
	ambient_light
	ambient

	amperemeter
	electric_current
	ambient

	anemometer
	wind_speed
	ambient

	barometer
	pressure
	ambient

	battery charge level sensor
	battery_charge
	device

	blood pressure meter
	blood_pressure
	user

	clinical thermometer
	temperature
	user

	clock, time gauge
	time
	ambient

	compass
	direction
	ambient

	fingerprint sensor
	fingerprint
	user

	flip state sensor
	flip_state
	device

	GPS
	location
	user

	heartrate sensor/RR interval
	heart_rate/RR_inteval
	user

	humiditymeter
	humidity
	ambient

	illuminance sensor
	illuminance
	ambient

	“is charged" sensor
	is_charged
	device

	joystick
	direction_of_motion
	user

	keyboard
	character
	device

	luminance sensor
	luminance
	ambient

	microphone
	sound_intensity
	ambient

	milometer
	length
	ambient

	mouse
	direction_of_motion
	user

	network field intensity indicator
	network_field_intensity
	device

	orientation sensor
	orientation
	device

	power sensor
	power
	ambient

	proximity sensor
	proximity
	ambient

	radiation sensor
	absorbed_dose
	ambient

	respiration sensor
	respiration
	user

	rotation sensor
	rotation
	device

	scales
	mass
	user

	sensor measuring user's blood glucose level
	blood_glucose_level
	user

	sensor measuring user's blood oxygen saturation
	blood_oxygen_saturation
	user

	sensor measuring user's fat percentage
	body_fat_percentage
	user

	sensor measuring user's gestures
	gesture
	user

	skin conductance sensor
	skin_conductance
	user

	step counter
	step_count
	user

	teslameter
	magnetic_flux_density
	ambient

	thermometer for air
	temperature
	ambient

	tilt angle sensor
	angle
	device

	velocimeter
	velocity
	user

SensorManager provides two static methods to find sensors.
findSensors(quantity, contextType)
public static SensorInfo[] findSensors(java.lang.String quantity, java.lang.String contextType)

where quantity can be one of those present in Table 4 and contextType can be among the following values:
· SensorInfo.CONTEXT_TYPE_AMBIENT

· SensorInfo.CONTEXT_TYPE_DEVICE
· SensorInfo.CONTEXT_TYPE_USER

· SensorInfo.CONTEXT_TYPE_VEHICLE.

If both parameters are null, all supported sensors are returned. If only one of the parameters is null then only the other is used as search criteria.

findSensors(URL)

public static SensorInfo[] findSensors(java.lang.String url)

Specific Sensor can also be found by providing the URL. For example URL “sensor:acceleration;contextType=device;model=acc01” specifies acceleration sensor.
The above two methods return an array of SensorInfo objects listing the found sensors. SensorInfo contains the information of sensor properties such as the model, the vendor and maximum sampling rate.
SensorInfo contains the information of sensor properties listed below:
· Connection Type- embedded, remote, wireless, wired
· Context Type- user, device, ambient, vehicle
· Description- description of sensor
· Model vendor- specific model information
· Quantity qualifier- to help finding the proper sensor
· URL- URL needed for sensor connection
· ChannelInfo- channels of sensor
· Property sensor- specific properties
· MaxBufferSize- maximum data buffer size
The following code snippet shows how to find sensors.
/* get sensors specified by quantity and context type*/
SensorInfo[] sensorInfos = SensorManager.findSensors("acceleration",
 SensorInfo.CONTEXT_TYPE_USER);
/* Find specific sensor by providing the sensor URL.*/
SensorInfo[] sensorInfos =

 SensorManager.findSensors("sensor:acceleration;contextType=device;model=acc01”);
/*get all sensors available even if their access is restricted*/

SensorInfo[] inf = SensorManager.findSensors(null, null);
If there are several sensors measuring the same quantity, the application developer may want to select a specific sensor based on criteria such as accuracy, or a sampling rate. This is done by examining and comparing the information provided by the SensorInfo instances.
Some sensors are intended for restricted use only, to be used in the manufacturer, operator, or trusted party domain applications only, or if the user permits. When the application does not have the required permissions, all the found sensors are still returned but they cannot necessary be opened. The Connector.open() and PushRegistry.registerConnection() methods throw SecurityException if the application does not have the required permission to use the sensor.
Monitoring Sensor
SensorManager is also responsible for registering and unregistering SensorListener objects. A SensorListener will get sensorAvailable()/ sensorUnavailable() notifications. Only one notification for each matching SensorListener is sent per change in availability.

//register listener to receive status changed for particular sensor
…

 SensorManager.addSensorListener(new SensorListener() {

 public void sensorAvailable(SensorInfo s) {

 form.append("Sensor available :) " + s.getUrl());

 }

 public void sensorUnavailable(SensorInfo s) {
 form("Sensor unavailable :(" + s.getUrl());

 }

 }, " acceleration ");
…
Creating Connection
After selecting the desired sensor based on information in SensorInfo objects, the sensor URL can be retrieved from the SensorInfo object with the getUrl() method.
The sensor URL is used to create the SensorConnection via the Connector class. The SensorConnection is a Generic Connection Framework (GCF) Connection. The Connector.open() method returns a SensorConnection instance providing an active connection to the sensor. If the given URL is mapping to multiple sensors then Connector may freely decide which matching sensor to use for the returned SensorConnection.
The following code snippet shows how to obtain a SensorConnection.
…

try {
//Creating a sensor Connection by providing URL of the selected sensor
SensorConnection sensorConn = (SensorConnection)

 Connector.open(sensorInfos[selectedSensor].getUrl());
} catch (IOException e) { e.printStackTrace(); }
…
Data Capture
The SensorConnection represents a connection to the real sensor device. SensorConnection is used to get the data from the sensor.
Data can be retrieved by two means:
· Synchronously
· Asynchronously
Synchronous Data
Synchronous data retrieval is done by calling the SensorConnection.getData(int bufferszie) method. The bufferSize parameter defines the number of samples inside each Data object.
The following code snippet illustrates how to start synchronous data fetching.

…

 SensorConnection acceralation =

 (SensorConnection)Connector.open("sensor:accelaration");
 final int bufferSize = 1;
 Data[] data = acceralation.getData(bufferSize);
 for (int i=0, l=data.length; i<l; i++){

 double value = data[i].getDoubleValues()[0];

 form.append("\n channel = "+

 data[i].getChannelInfo().getName()+", value=" + value);

 }
…
The measured data is returned as an array of Data objects, where each Data object encapsulates the data of one channel. The channel is a way to structure the data.
Channels represent different dimensions of the measurement. If the sensor measures several values simultaneously, values from each channel are stored to separate Data objects.
If the sensor is measuring just one property, there is only one channel e.g. thermometer. On the other hand, Accelerometer has three channel namely "axis_x", "axis_y" and "axis_z".

The Data object contains the information about the channel of its origin, and it can be retrieved with the Data.getChannelInfo() method.
The following information is mandatory for all ChannelInfo objects:

· Name- unique name of the channel
· Accuracy- express between <0 - 1>

· Data Type- TYPE_DOUBLE, TYPE_INT, TYPE_OBJECT
· Measurement ranges- defined with smallest and the largest possible value and resolution

· Scale- expressed as exponent of ten
· Unit- unit in which data value is represented

Asynchronous Data
The asynchronous mode requires applications to register as DataListener objects to SensorConnection using setDataListener(DataListener listener,int bufferSize) in order to receive dataReceived() notifications of collected data. To quit getting notifications, the application must call the method removeDataListener().
When registering a DataListener to a SensorConnection, you must also provide the size of the buffer. This buffer indicates how many data-values should be collected before sending an event to the DataListener. Setting the buffer size to a low value would give you faster updates. However, using a large buffer size you can easily filter out freak values from the accelerometer by calculating the average.

public class DataCollecter implements DataListener
{

….

public void connect()

{

 …

 sensor = (SensorConnection) Connector.open(sensorInfos[selectedSensor].getUrl());

 sensor.setDataListener(this, 1);
 ….
}

public void dataReceived(SensorConnection sensor, Data[] data,boolean isDataLost) {
 final string xchannel = "axis_x";

 final string ychannel = "axis_y";

 final string zchannel = "axis_z";

 for (int i = 0; i < data.length; i++) {

 if (xchannel.equals(data[i].getChannelInfo().getName())) {

 double xvalue = data[i].getDoubleValues()[0];

 form.append("channel x value "+xvalue);

 } else if (ychannel.equals(data[i].getChannelInfo() .getName())) {

 double yvalue = data[i].getDoubleValues()[0];

 form.append("channel y value "+yvalue);

 } else if (channelNames[2].equals(data[i].getChannelInfo().getName())) {

 double zvalue = data[i].getDoubleValues()[0];

 form.append("channel z value "+zvalue);

 }

 }

}

…

}
Adding Conditions
Conditions can also be set to sensor. Conditions are used for monitoring the sensor data.
The Channel maintains Condition objects attached to the channel of the sensor. There are three conditions provided in Sensor API: LimitCondition, RangeCondition, and ObjectCondition.
ConditionListener should be set to receive condition met notification, when any one of the conditions is met.
LimitCondition
LimitCondition is intended for numeric data to set various kinds of conditions. LimitCondition is set through the use of Operator. The operator has an important role in defining the LimitCondition.
One of the following operators must be used in defining the LimitCondition:

· Condition.OP_EQUALS - equals

· Condition.OP_LESS_THAN_OR_EQUALS - less than or equals

· Condition.OP_LESS_THAN - less than

· Condition.OP_GREATER_THAN - greater than

· Condition.OP_GREATER_THAN_OR_EQUALS - greater than or equals
Examples to set LimitCondition objects to Channel objects

channelObj.addCondition(listener, new LimitCondition(50,Condition.GREATER_THAN));
The ConditionListener of channelObj will be notified when value is > 50.
channelObj.addCondition(listener, new LimitCondition(-45, Condition.LESS_THAN));

channelObj.addCondition(listener, new LimitCondition(45, Condition.GREATER_THAN));
The ConditionListener of channelObj will be notified when value is < -45 or > 45.

RangeCondition
RangeCondition checks if the measured data value is within the defined range. Four types of ranges can be defined with the operators:
· open range, (lowerLimit, upperLimit)

· closed range, [lowerLimit, upperLimit]

· half-closed half-open range, [lowerLimit, upperLimit)

· half-open half-closed range, (lowerLimit, upperLimit]
Examples to set RangeCondition objects to Channel objects
channelObj.addCondition(listener, new RangeCondition(lowerLimit,

 Condition.OP_GREATER_THAN, upperLimit, Condition.OP_LESS_THAN);
ConditionListener will be notified when lowerLimit < value < upperLimit
channelObj.addCondition(listener, new RangeCondition(lowerLimit,

 Condition.OP_GREATER_THAN_OR_EQUALS, upperLimit,

 Condition.OP_LESS_THAN_OR_EQUALS);
ConditionListener will be notified when lowerLimit <= value <= upperLimit

ObjectCondition
The ObjectCondition checks the equality of the set limit to the measured data value.
This Condition is intended for a channel, the data type of which is ChannelInfo.TYPE_OBJECT.
The equality is checked by using the equals() method of the set limit. The ObjectCondition MUST be immutable.

…

private void addConditions(){
 private static final ObjectCondition ObjCond =
 new ObjectCondition(new Object(){ public boolean equals(Object o){return true;}});

 ChannelInfo[] cInfos = sensor.getSensorInfo().getChannelInfos();

 for (int i=0,l=cInfos.length; i<l; i++){

 Channel channel = sensor.getChannel(cInfos[i]);

 if (cInfos[i].getDataType() == ChannelInfo.TYPE_OBJECT){

 channel.addCondition(this, ObjCond);

 continue;

 }
 }

 }
…
Sensor Deactivation
Sensor deactivation should be done once your MIDlet no longer requires sensor. Sensor deactivation is done through removeDataListener() method in SensorConnection class. removeDataListener() removes the DataListener registered to this SensorConnection. The DataListener stops getting dataReceived() notifications.

public void disconnectSensor() {

…

 if(sensor!=null) {

 sensor.removeDataListener();
 try {

 sensor.close();

 }catch(IOException e) {

 e. printStackTrace();
 }

 }

…

notifyDestroyed();

}
Detecting Sensor API’s presence
To check whether the handset supports Sensor API,
System.getProperty("microedition.sensor.version").

can be used. If it supports, the sensor version is returned, else null will be returned.
Security & Permissions

Some methods in this API are defined to throw a SecurityException if the user does not have the permissions needed to perform the action.
This API specifies three permissions to restrict the usage of some sensors. They are:

Private Sensor
Private sensors are sensors that handle confidential data that the user does not want to expose. Examples include sensors related to health, or wealth like a heart rate sensor, or scales.
Protected Sensor

Protected Sensors are system sensors with restricted access to system. System sensors might handle hidden or protected system resources. Data from these sensors is provided only for trusted applications.
Public Sensor
Sensors that are not private or protected are understood as public sensors.
All these sensor groups, which are private, protected, and public, require the javax.microedition.io.Connector.sensor permission to open the connection.
Table 4 defines the names of three sensor related permissions and the methods that are protected by each permission.
Table 5: Permissions

	Permissions name
	Methods protected by this Permission

	javax.microedition.sensor.PrivateSensor
	Connector.open() PushRegistry.registerConnection()

	javax.microedition.sensor.ProtectedSensor
	Connector.open() PushRegistry.registerConnection()

	javax.microedition.io.Connector.sensor
	Connector.open()

PushRegistry
PushRegistry can be used with Sensor for automatic launch of application. When the application is registered, the sensor URL containing the conditions for launch is specified together with the application to be launched.
The application management software (AMS) monitors the defined sensors. When the sensor becomes available or one of the monitored conditions is met, the AMS finds the application to be woken up and launches it.

The AMS stores the data value that caused the automatic launch of the application when the monitored condition was met, as well as the met condition. The validity, uncertainty and timestamp information is also stored.

PushRegistry can be used in two ways:
· Availability-based push
· Condition-based push.
Availability-based push

Sensor application is launched automatically when the sensor becomes available. Some sensors may not support availability-based push mechanism. For example, some sensors might always be available but may not support availability-based push. Whether the sensor supports availability-based push can be found out with the method SensorInfo.isAvailabilityPushSupported()
The MIDlet registered statically in the JAD for availability-based push is shown below.
 MIDlet-Push-1: sensor:acceleration,sample.PushAcclApp,*

 MIDlet-Permissions: javax.microedition.io.PushRegistry
Condition-based push
Conditions are set per channel. After any one condition of any channel is met, the registered application is launched.
The sensor URL scheme for the PushRegistry does not define conditions for channels of an Object data type.
Whether a sensor supports condition-based push can be found out with the method SensorInfo.isConditionPushSupported().
The MIDlet registered statically in the JAD for condition-based push is shown below.
 MIDlet-Push-1: sensor:RR_interval?channel=RR_interval&limit=240&op=le, sample.PushCondApp,*

 MIDlet-Permissions: javax.microedition.io.PushRegistry, javax.microedition.sensor.PrivateSensor

The AMS system checks periodically the availability of supported RR_interval sensors around. If RR_interval sensor is available, then the defined conditions are checked. If any one of the conditions is met, the application is launched. In the above example, the measured value being less than or equal to 240 ms causes the application to be launched.

Sensor Example

This sample example shows how to use Sensor API for getting sensor information.
Class: SensorMIDlet
import java.io.IOException;

import java.util.Vector;
import javax.microedition.io.Connector;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.List;

import javax.microedition.lcdui.Canvas;

import javax.microedition.midlet.MIDlet;

import javax.microedition.sensor.ChannelInfo;

import javax.microedition.sensor.Data;

import javax.microedition.sensor.DataListener;

import javax.microedition.sensor.SensorConnection;

import javax.microedition.sensor.SensorInfo;

import javax.microedition.sensor.SensorManager;

public class SensorMIDlet extends MIDlet implements DataListener, CommandListener {

 private static final Command CMD_SELECT = new Command("Select", Command.SCREEN, 1);

 private static final Command CMD_EXIT = new Command("Exit", Command.EXIT, 1);

 private SensorConnection sensor;

 private String[] channelNames;

 private SensorInfo[] sensorInfos;

 private boolean sensorSelected;

 private List sensorSelector;

 private SensorCanvas sensorCanvas;

 /* Initialize MIDlet and detect accelerometer sensor. */

 public SensorMIDlet() throws IOException {

 if (System.getProperty("microedition.sensor.version") == null) {

 throw new IllegalArgumentException("JSR256 is not supported!");

 }
 sensorCanvas = new SensorCanvas(this);

 sensorInfos = getSensorInfos();

 if (sensorInfos == null) {

 throw new IllegalArgumentException(

 "Valid accelerometer sensor not found");

 }

 sensorSelector = new List("Select accelerometer:", List.EXCLUSIVE);

 for (int i = 0; i < sensorInfos.length; i++) {

 sensorSelector.append(sensorInfos[i].getUrl(), null);

 }

 sensorSelector.addCommand(CMD_SELECT);

 sensorSelector.addCommand(CMD_EXIT);

 sensorSelector.setCommandListener(this);

 }

 public void startApp() {

 if (!sensorSelected) {

 Display.getDisplay(this).setCurrent(sensorSelector);

 } else {

 Display.getDisplay(this).setCurrent(sensorCanvas);

 sensor.setDataListener(this, 1);

 }

 }

 public void pauseApp() {

 sensor.removeDataListener();

 }

 public void destroyApp(boolean unconditional) {
 if (sensor != null) {

 try {

sensor.removeDataListener();

 sensor.close();

 } catch (IOException ex) {

 ex.printStackTrace();

 }

 }

 notifyDestroyed();

 }

 public void commandAction(Command c, Displayable d) {

 if (d.equals(sensorSelector)) {

 if (CMD_SELECT.equals(c)) {

 new Thread() {

 public void run() {

 int idx = sensorSelector.getSelectedIndex();

 channelNames = getSensorInfoChannelsNames(sensorInfos[idx]);

 try {

 sensor = (SensorConnection) Connector.open(sensorInfos[idx].getUrl());

 sensorSelected = true;

 Display.getDisplay(SensorMIDlet.this).setCurrent(sensorCanvas);

 sensor.setDataListener(SensorMIDlet.this, 1);

 } catch (IOException e) {e.printStackTrace();}

 }

 }.start();

 } else if (CMD_EXIT.equals(c)) {

 destroyApp(false);

 notifyDestroyed();

 }

 }

 }

 /* pass acceleration data to the sensorCanvas.*/

 public void dataReceived(SensorConnection sensor, Data[] data, boolean isDataLost) {

 double accelX = 0;

 double accelY = 0;

 double accelZ = 0;

 for (int i = 0; i < data.length; i++) {

 if(channelNames[0].equals(data[i].getChannelInfo().getName())) {

 accelX = data[i].getDoubleValues()[0];

 }else

 if(channelNames[1].equals(data[i].getChannelInfo().getName())) {

 accelY = data[i].getDoubleValues()[0];

 }else

 if(channelNames[2].equals(data[i].getChannelInfo().getName())) {

 accelZ = data[i].getDoubleValues()[0];

 }

 }

 sensorCanvas.setValues(accelX, accelY, accelZ);

 }

 /* Detect appropriate sensor info. */

 private SensorInfo[] getSensorInfos() {

 /* Find all device accelerometers*/

 SensorInfo[] sensorInfos =

 SensorManager.findSensors("acceleration",SensorInfo.CONTEXT_TYPE_DEVICE);

 Vector validInfos = new Vector();

 for (int i = 0; i < sensorInfos.length; i++) {

 if (getSensorInfoChannelsNames(sensorInfos[i]) != null) {

 validInfos.addElement(sensorInfos[i]);

 }

 }

 SensorInfo[] ret = null;

 if (validInfos.size() > 0) {

 ret = new SensorInfo[validInfos.size()];

 validInfos.copyInto(ret);

 }

 return ret;

 }

 /* Detect valid channel names for sensor. */

 private String[] getSensorInfoChannelsNames(SensorInfo sensorInfo) {

 Vector channelNames = new Vector();

 ChannelInfo[] channelInfos = sensorInfo.getChannelInfos();

 if (channelInfos.length > 1) {

 /* Accelerometer must support at least 2 channels*/

 for (int i = 0; i < channelInfos.length; i++) {

 if (ChannelInfo.TYPE_DOUBLE == channelInfos[i].getDataType()) {

 /* The channel type must be double*/

 channelNames.addElement(channelInfos[i].getName());

 }

 }

 if (channelNames.size() > 2) {

 String[] names = new String[3];

 names[0] = (String) channelNames.elementAt(0);

 names[1] = (String) channelNames.elementAt(1);

 names[2] = (String) channelNames.elementAt(2);

 return names;

 }

 }

 return null;

 }

}
Class: SensorCanvas
import java.io.IOException;

import javax.microedition.lcdui.Canvas;

import javax.microedition.lcdui.Graphics;

import javax.microedition.lcdui.Image;

public class SensorCanvas extends Canvas implements Runnable {

 private double xChannel, yChannel, zChannel;

 private SensorMIDlet midlet;

 public SensorCanvas(SensorMIDlet midlet) {

this.midlet = midlet;

 setFullScreenMode(true);

 new Thread(this).start();

 }

 public void run() {

 try {

 while (true) {

 repaint();

 Thread.sleep(100);

 }

 }catch (InterruptedException e) {

 }

 }

 public void paint(Graphics g) {

 g.setColor(0xffffff);

 g.fillRect(0, 0, getWidth(), getHeight());

 g.setColor(0);

 g.drawString("Accelorometer Values",getWidth()>>1,10,17);

 g.drawString("X Channel "+xChannel,getWidth()>>1,30, 17);

 g.drawString("Y Channel "+yChannel,getWidth()>>1,50, 17);

 g.drawString("Z Channel "+zChannel,getWidth()>>1,70, 17);

 g.drawString("Exit",2,getHeight()-15,20);

 }
 public void setValues(double x, double y, double z) {

 xChannel = x;

 yChannel = y;

 zChannel = z;

 }

 public void keyPressed(int keyCode) {

midlet.destroyApp(true);

 }

}
[image: image2][image: image3][image: image4][image: image5][image: image6][image: image7][image: image8][image: image9][image: image10][image: image11][image: image12][image: image13][image: image14][image: image15][image: image16][image: image17][image: image18][image: image19]
API Guide – v 0.9

Page 25 of 26

