Sensor API

Version 0.9, Draft

aSl\MSUNG

moaille imnovakeaor

JSR 256

COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law. Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.

All other company and product names may be trademarks of the respective companies
with which they are associated.

API Guide —v 0.9 Page 2 of 26

aSl\MSUNG

mobile imnavakor

About This Document

This document describes JSR 256 Sensor API followed by a sample code.

Scope

This document is for the users who have knowledge of Java ME and need a brief

introduction to JSR 256.

Document History

Date

Version Comment

02/06/09

0.9 Draft

References

e Sensor APIJSR:

http://jcp.org/en/jsr/detail?id=256

e Sensor API Article:

http://developers.sun.com/mobility/apis/articles/opengles mobilesensor/

Abbreviations

MIDP

Mobile Information Device Profile

CLDC

Connected Limited Device Configuration

AMS

Application Management Software

JSR

Java Specification Request

GCF

Generic Connection Framework

API

Application Programming Interface

URL

Uniform Resource Locator

API Guide —v 0.9

Page 3 of 26

http://jcp.org/en/jsr/detail?id=256
http://developers.sun.com/mobility/apis/articles/opengles_mobilesensor/

— Sl

Table of Contents

a1 oo (U od 1 o] o OSSPSR 6
OVEBIVIBW ...tttk ettt et se et e e e st e s bt et e s e s be e st e es e e e se et e eseenteenteaneeaneenseaneenrens 6
USE CaSES OF SENSOI....c.viiiiiiiiiteeiie ettt sttt sreete e steeaeeneesreeneeanes 6

F AN I B 1= Tox] o] T SR 7
JAVAX.MICTOEUITION.SENSON ... ittt ettt sreeneaneenaeens 7
Javax.microedition.SeNSOr.CONTIOL..........ciiiiiiiiiieie e 8
T8 S0 USRS PRSPRTUPRUPOPRS 9
SENSON DEEECTION ...ttt ettt b e bttt n e 9
MORNITOTING SENSOK ...ttt et e et e e st e et e e seesreente e e e ssaesaeennenreas 13
Creating CONNECTIONc..iiiiiieec ettt bbbt ne e sreeneennes 13
DAtA CAPLUIE ...t 14
SYNCAIONOUS DAtcviiieiiieie ettt te e e nne e 14
Asynchronous Data...™.... BB ... BN 5.8 ™. N . % 8. K. " 15
Adding Conditions....&.- 5. 80 0. B LE.N.. .. 0. H.0 N 8 N . 16
IBEHIESEHERER.cccooeeverneerincenieecsiiseesseesensseseseeesissee saeesesnseessssasessessanns 16
REEGECOMMEIEON -.......on Ll e i L e o . 17

(@] o =To1 (@0 g0 11] HE OSSR 17
SENSOI DEACTIVALION ...ttt bttt sr et enes 18
Detecting SENSOr API™S PIrESENCEoiuiiieitieieeiieieie ettt 18
SECUNLY & PEIMISSIONScviiiiitieitieie e e et ste e te ettt a e e re e te e s e s e e saeeneesreeeeenes 18
PRIVALE SENSOT ...ttt bbbttt bbb bbb ne e e e 19

e 0 (T (=10 I T=] {0 PSPPSRSO 19
PUDBIIC SENSOT ...ttt et e e te e e neesaeeneenneas 19
U g eTo 1 SR 19
Availability-bDased PUSHcooiiee e 20
Condition-bDased PUSH ..o s 20
SENSON EXAMPIE ...ttt 21
C1asS: SENSOIMIDIEL........oviiiiciee e 21
C1aSS: SENSOMCANVAScvverveieieitestesieeieeseete ettt sttt et et sttt e be b e seeneeneeens 24

AP| Guide —v 0.9 Page 4 of 26

& SAMSUNG API Guide
maobile innovakor

List of Tables

Table 1: Sensor Package Interface Informationcocovviviiiiiinininiiccccccce, 7
Table 2: Sensor Package Class INformationcccccevvviiiiininiiiininiiiinincicceecns 8
Table 3: Control Package Interface Information............ccoeeiiiviiiiiiniiinniiiicicns 8
Table 4: Examples of defining sensors with quantity and context typeccccoceevevnnee. 10
Table 5: PermMiSSIONSc.cuiviiiiiiiiiiiciciciccc s 19

API Guide —v 0.9 Page 5 of 26

— Sl

Introduction

JSR 256 Mobile Sensor API allows Java ME application to fetch data easily and
uniformly from sensors. Sensor API does not provide any methods for controlling the
sensors. The API offers unified way of managing sensors, connected to the mobile
devices, and easy access to the sensor data.

The API is targeted to the resource-constrained devices and needs to be memory-
efficient to run.

The API is designed as an Optional Package that can be used with many Java Micro
Edition Profiles. The minimum platform required by the API is, Connected Limited
Device Configuration (CLDC), version 1.1.

Overview

A sensor is any measurement data source. Sensors are of different types:

e Physical sensors such as magnetometers and accelerometers.

e Virtual sensors such as battery level sensor combine and manipulate the data they
receive from other kinds of physical sensors. Battery level sensor indicates the left
over charge in a battery.

Use Cases of Sensor

Sensors can be widely used for the following scenarios:

¢ Gaming: Device itself acts as a game control providing motion related input

modalities.

o Better usability of a device: Improves accessibility and usability of device such as
change in display backlight, display orientation.

e Monitor health condition: Monitors the user heart rate, body temperature etc.

e Outdoor activities: Supports step counter etc.

e Monitor external conditions: Air pressure, temperature, wind and humidity.

AP| Guide —v 0.9 Page 6 of 26

© N :
J msl:lﬁ iyﬂ§ﬂq ak DGr—
API Description

The JSR 256 API is split into two parts:

e javax.microedition.sensor

e javax.microedition.sensor.control

javax.microedition.sensor

The package javax.microedition.sensor is a mandatory package and provides API for
receiving the information from a sensor.

It contains 6 classes and 10 interfaces.

The following table shows the interface and classes.

Table 1: Sensor Package Interface Information

Interface Description

Provides information about the channel and maintain
Channel N ol

conditions for monitoring the data.

Provides information about the data properties of the
Channellnfo PTopP

channel.

. Sets condition to monitor data and receives notification when

Condition . .

data meets defined condition

. . Provides notifications when monitored data meets the

ConditionListener . . L

condition defined by the application.
Data Represents data values retrieved from one channel of a

sensor.

Implemented by the application to receive data and errors
DataAndErrorListener p y PP

from the sensor.

Implemented by the application to receive data from the
DataListener P y PP

Sensor.
SensorConnection Abstraction of an actual sensor
SensorInfo Contains a variety of information about the physical sensor.

. Represents a listener that receives notifications when the

SensorListener oy 1 eqe

availability of the sensor changes.

AP| Guide —v 0.9 Page 7 of 26

aSI\IVISUNG

mobile innovakor

Table 2: Sensor Package Class Information

Class Description
. . Condition intended for numeric data to set various kind of

LimitCondition o\

conditions.

Represents the measurement range of one channel of the
MeasurementRange

Sensor.

Checks the equality of the set limit to the measured data
ObjectCondition q y

value.
RangeCondition Checks if the measured data value is within the defined range.
SensorManager Used to find sensors and monitor their availability.
Unit Represents the unit of the measured data values.

javax.microedition.sensor.control

The package javax.microedition.sensor.control is an optional package that represents
examples of possible controls like starting, stopping, calibrating, and setting a
measurement range or accuracy, and provides an interface for implementing new
controls. It contains 6 interfaces. Table 3 shows the interfaces.

Table 3: Control Package Interface Information

Interface Description
Represents a sensor control enabling the sensor's
Control
control.
Represents a sensor which can be controlled with the
Controllable

controls provided.

MeasurementRangeControl

Example of a general control used to set the
measurement range of the sensor.

Example of a general control used to set the sample rate

SampleRateControl of the Sensor.

StartControl Exa'mpl'e of a general control used to start the sensor by
calling its execute() method.

StopControl StopControl object is an example of a general control

used to stop the sensor by calling its execute() method.

API Guide —v 0.9

Page 8 of 26

(® \ .
o8 SAMSUNG Pl Guide
Sensor

The application that wishes to utilize sensor data typically performs following
operations with a sensor:

e Sensor detection (Discovery)
e Sensor activation (Connection, Monitoring)
¢ Data capture (Listener, Condition)

e Sensor deactivation

Sensor Detection

The main functionality of Mobile Sensor API is to fetch the sensor data and monitor it
based on a set of conditions. The appropriate sensor has to be found or known
beforehand in order to use. An application can search for a desired sensor based on
quantity and context type.

The quantity is the property the sensor is measuring.

The context type represents the environment where the measurement is taken, such as
"ambient" or "device".

Context type categorizes sensors into four groups:

¢ Ambient: sensors measuring some ambient property of the environment.
e Device: sensors measuring properties related to the device.
e User: sensors measuring some function of the user.

e Vehicle: sensors measuring properties related to a vehicle.

The application can use either one independently or specify both.

API Guide —v 0.9 Page 9 of 26

ol

SAMSUNG

mobile innovakor

To help the user to find the sensor, some readymade combinations and the sensor
following from the definition, are presented in table 4.

Table 4: Examples of defining sensors with quantity and context type

Sensor Quantity Context type
accelerometer acceleration user
alcometer alcohol user
altimeter altitude user
ambient light sensor ambient_light ambient
amperemeter electric_current ambient
anemometer wind_speed ambient
barometer pressure ambient
battery charge level sensor | battery_charge device
blood pressure meter blood_pressure user
clinical thermometer temperature user
clock, time gauge time ambient
compass direction ambient
fingerprint sensor fingerprint user
flip state sensor flip_state device
GPS location user
heartrate sensor/RR heart_rate/RR_inteval user
interval

humiditymeter humidity ambient
illuminance sensor illuminance ambient
“is charged" sensor is_charged device
joystick direction_of_motion user
keyboard character device
luminance sensor luminance ambient
microphone sound_intensity ambient
milometer length ambient
mouse direction_of motion user
network field intensity network_field_intensity device
indicator

orientation sensor orientation device
power sensor power ambient
proximity sensor proximity ambient
radiation sensor absorbed_dose ambient
respiration sensor respiration user
rotation sensor rotation device

API Guide —v 0.9

Page 10 of 26

&

SAMSUNG

mabile innovakor

API Guide

scales mass user
sensor measuring user's blood_glucose_level user
blood glucose level

sensor measuring user's blood_oxygen_saturation user
blood oxygen saturation

sensor measuring user's body_fat_percentage user

fat percentage

sensor measuring user's gesture user
gestures

skin conductance sensor skin_conductance user
step counter step_count user
teslameter magnetic_flux_density ambient
thermometer for air temperature ambient
tilt angle sensor angle device
velocimeter velocity user

SensorManager provides two static methods to find sensors.

findSensors(quantity, contextType)

where quantity can be one of those present in Table 4 and contextType can be among the

following values:

e Sensorlnfo. CONTEXT_TYPE_AMBIENT

e SensorInfo. CONTEXT_TYPE_DEVICE

e SensorInfo. CONTEXT_TYPE_USER

e Sensorlnfo. CONTEXT_TYPE_VEHICLE.

If both parameters are null, all supported sensors are returned. If only one of the
parameters is null then only the other is used as search criteria.

findSensors(URL)

Specific Sensor can also be found by providing the URL. For example URL
“sensor:acceleration;contextType=device;model=acc01” specifies acceleration sensor.

API Guide —v 0.9

Page 11 of 26

& SAMSUNG API Guide
mobile innovakor

The above two methods return an array of Sensorlnfo objects listing the found sensors.
SensorInfo contains the information of sensor properties such as the model, the vendor
and maximum sampling rate.

SensorInfo contains the information of sensor properties listed below:

e Connection Type- embedded, remote, wireless, wired

e Context Type- user, device, ambient, vehicle

e Description- description of sensor

e Model vendor- specific model information

¢ Quantity qualifier- to help finding the proper sensor
e URL- URL needed for sensor connection

e Channellnfo- channels of sensor

e Property sensor- specific properties

e MaxBufferSize- maximum data buffer size

The following code snippet shows how to find sensors.

If there are several sensors measuring the same quantity, the application developer may
want to select a specific sensor based on criteria such as accuracy, or a sampling rate.
This is done by examining and comparing the information provided by the SensorInfo
instances.

Some sensors are intended for restricted use only, to be used in the manufacturer,
operator, or trusted party domain applications only, or if the user permits. When the
application does not have the required permissions, all the found sensors are still
returned but they cannot necessary be opened. The Connector.open() and
PushRegistry.registerConnection() methods throw SecurityException if the application does
not have the required permission to use the sensor.

API Guide —v 0.9 Page 12 of 26

& SAMSUNG API Guide
mobile innovakor

Monitoring Sensor

SensorManager is also responsible for registering and unregistering SensorListener objects.
A SensorListener will get sensorAvailable()/ sensorUnavailable() notifications. Only one
notification for each matching SensorListener is sent per change in availability.

Creating Connection

After selecting the desired sensor based on information in Sensorlnfo objects, the sensor
URL can be retrieved from the Sensorlnfo object with the getUrl() method.

The sensor URL is used to create the SensorConnection via the Connector class. The
SensorConnection is a Generic Connection Framework (GCF) Connection. The
Connector.open() method returns a SensorConnection instance providing an active
connection to the sensor. If the given URL is mapping to multiple sensors then
Connector may freely decide which matching sensor to use for the returned
SensorConnection.

The following code snippet shows how to obtain a SensorConnection.

API Guide —v 0.9 Page 13 of 26

& SAMSUNG API Guide
mobile innovakor
Data Capture

The SensorConnection represents a connection to the real sensor device.
SensorConnection is used to get the data from the sensor.

Data can be retrieved by two means:
e Synchronously

e Asynchronously

Synchronous Data

Synchronous data retrieval is done by calling the SensorConnection.getData(int bufferszie)
method. The bufferSize parameter defines the number of samples inside each Data object.

The following code snippet illustrates how to start synchronous data fetching.

The measured data is returned as an array of Data objects, where each Data object
encapsulates the data of one channel. The channel is a way to structure the data.

Channels represent different dimensions of the measurement. If the sensor measures
several values simultaneously, values from each channel are stored to separate Data
objects.

If the sensor is measuring just one property, there is only one channel e.g. thermometer.
On the other hand, Accelerometer has three channel namely “axis_x", "axis_y” and
"axis_z".

The Data object contains the information about the channel of its origin, and it can be
retrieved with the Data.getChannellnfo() method.

API Guide —v 0.9 Page 14 of 26

& SAMSUNG API Guide
mobile innovakor

The following information is mandatory for all Channellnfo objects:

e Name- unique name of the channel

e Accuracy- express between <0 - 1>

e Data Type- TYPE_DOUBLE, TYPE_INT, TYPE_OBJECT

e Measurement ranges- defined with smallest and the largest possible value and resolution
e Scale- expressed as exponent of ten

e Unit- unit in which data value is represented

Asynchronous Data

The asynchronous mode requires applications to register as DataListener objects to
SensorConnection using setDataListener(DataListener listener,int bufferSize) in order to
receive dataReceived() notifications of collected data. To quit getting notifications, the
application must call the method removeDataListener().

When registering a DataListener to a SensorConnection, you must also provide the size of
the buffer. This buffer indicates how many data-values should be collected before
sending an event to the DataListener. Setting the buffer size to a low value would give
you faster updates. However, using a large buffer size you can easily filter out freak
values from the accelerometer by calculating the average.

API Guide —v 0.9 Page 15 of 26

& SAMSUNG API Guide
mobile innovakor

Adding Conditions

Conditions can also be set to sensor. Conditions are used for monitoring the sensor data.
The Channel maintains Condition objects attached to the channel of the sensor. There
are three conditions provided in Sensor API: LimitCondition, RangeCondition, and
ObjectCondition.

ConditionListener should be set to receive condition met notification, when any one of the
conditions is met.

LimitCondition

LimitCondition is intended for numeric data to set various kinds of conditions.
LimitCondition is set through the use of Operator. The operator has an important role in
defining the LimitCondition.

One of the following operators must be used in defining the LimitCondition:

e Condition.OP_EQUALS - equals

e Condition.OP_LESS_THAN_OR_EQUALS - less than or equals

e Condition.OP_LESS THAN - less than

e Condition.OP_GREATER_THAN - greater than

e Condition.OP_GREATER_THAN_OR_EQUALS - greater than or equals

Examples to set LimitCondition objects to Channel objects

The ConditionListener of channelObj will be notified when value is > 50.

API Guide —v 0.9 Page 16 of 26

& SAMSUNG API Guide
mobile innovakor

The ConditionListener of channelObj will be notified when value is < -45 or > 45.

RangeCondition

RangeCondition checks if the measured data value is within the defined range. Four
types of ranges can be defined with the operators:

e open range, (lowerLimit, upperLimit)

e closed range, [lowerLimit, upperLimit]

¢ half-closed half-open range, [lowerLimit, upperLimit)

¢ half-open half-closed range, (lowerLimit, upperLimit]

Examples to set RangeCondition objects to Channel objects

ConditionListener will be notified when lowerLimit < value < upperLimit

ConditionListener will be notified when lowerLimit <= value <= upperLimit

ObjectCondition

The ObjectCondition checks the equality of the set limit to the measured data value.
This Condition is intended for a channel, the data type of which is
Channellnfo. TYPE_OBJECT.

The equality is checked by using the equals() method of the set limit. The
ObjectCondition MUST be immutable.

API Guide —v 0.9 Page 17 of 26

- ol API Guide

Sensor Deactivation

Sensor deactivation should be done once your MIDlet no longer requires sensor. Sensor
deactivation is done through removeDataListener() method in SensorConnection class.
removeDataListener() removes the DataListener registered to this SensorConnection. The
DataListener stops getting dataReceived() notifications.

Detecting Sensor API’s presence

To check whether the handset supports Sensor AP,

can be used. If it supports, the sensor version is returned, else null will be returned.
Security & Permissions

Some methods in this API are defined to throw a SecurityException if the user does not
have the permissions needed to perform the action.

This API specifies three permissions to restrict the usage of some sensors. They are:

API Guide —v 0.9

Page 18 of 26

o8 SAMSUNG | Guide
mobile innovaokor
Private Sensor

Private sensors are sensors that handle confidential data that the user does not want to
expose. Examples include sensors related to health, or wealth like a heart rate sensor,
or scales.

Protected Sensor

Protected Sensors are system sensors with restricted access to system. System sensors
might handle hidden or protected system resources. Data from these sensors is
provided only for trusted applications.

Public Sensor

Sensors that are not private or protected are understood as public sensors.

All these sensor groups, which are private, protected, and public, require the
javax.microedition.io.Connector.sensor permission to open the connection.

Table 4 defines the names of three sensor related permissions and the methods that
are protected by each permission.

Table 5: Permissions

Permissions name Methods protected by this Permission

Connector.open()

javax.microedition.sensor.PrivateSensor . i)
: PushRegistry.registerConnection()

Connector.open()

javax.microedition.sensor.ProtectedSensor : : .
PushRegistry.registerConnection()

Connector.open()

javax.microedition.io.Connector.sensor

PushRegistry

PushRegistry can be used with Sensor for automatic launch of application. When the
application is registered, the sensor URL containing the conditions for launch is
specified together with the application to be launched.

The application management software (AMS) monitors the defined sensors. When the

sensor becomes available or one of the monitored conditions is met, the AMS finds the
application to be woken up and launches it.

AP| Guide —v 0.9 >age 19 of 26

& SAMSUNG API Guide
mabile innovakor

The AMS stores the data value that caused the automatic launch of the application when
the monitored condition was met, as well as the met condition. The validity, uncertainty
and timestamp information is also stored.

PushRegistry can be used in two ways:
e Auvailability-based push
e Condition-based push.

Availability-based push

Sensor application is launched automatically when the sensor becomes available. Some
sensors may not support availability-based push mechanism. For example, some sensors
might always be available but may not support availability-based push. Whether the
sensor supports availability-based push can be found out with the method
SensorInfo.is Availability PushSupported()

The MIDIet registered statically in the JAD for availability-based push is shown below.

Condition-based push

Conditions are set per channel. After any one condition of any channel is met, the
registered application is launched.

The sensor URL scheme for the PushRegistry does not define conditions for channels of
an Object data type.

Whether a sensor supports condition-based push can be found out with the method
SensorInfo.isConditionPushSupported().

The MIDlet registered statically in the JAD for condition-based push is shown below.

The AMS system checks periodically the availability of supported RR_interval sensors
around. If RR_interval sensor is available, then the defined conditions are checked. If
any one of the conditions is met, the application is launched. In the above example, the
measured value being less than or equal to 240 ms causes the application to be launched.

API Guide —v 0.9 Page 20 of 26

a §=|"}ille.viln§auvclNi=nGr API GUIde

Sensor Example

This sample example shows how to use Sensor API for getting sensor information.

Class: SensorMIDlet

API Guide —v 0.9 Page 21 of 26

a §=|"}ille.viln§auvclNi=nGr API GUIde

API Guide —v 0.9 Page 22 of 26

a §=|"}ille.viln§auvclNi=nGr API GUIde

API Guide —v 0.9 Page 23 of 26

a §=|"}ille.viln§auvclNi=nGr API GUIde

Class: SensorCanvas

API Guide —v 0.9 Page 24 of 26

a §=’;lle.viln§auvclNi=nGr API GUIde

API Guide —v 0.9 Page 25 of 26

a §=lgllzviln§auvclNi=nGr API GUIde

API Guide —v 0.9 Page 26 of 26

	Sensor API
	Scope
	Document History
	References
	Abbreviations

