

Samsung Native Text
Input

 Version 0.9, Draft

INFORMATION GUIDE

 Information Guide

COPYRIGHT

Samsung Electronics Co. Ltd.
This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.
All other company and product names may be trademarks of the respective companies
with which they are associated.

Installation Guide – v 0.9 Page 2 of 15

 Information Guide

About This Document

This document contains the overview of Native Text Input (NTI) and procedure for
invoking the NTI keypad, followed by a sample code snippet to use the NTI feature.

Scope:

This document is intended for Java ME developers wishing to develop Java ME
applications for Samsung touch based phones. It assumes good knowledge of java
programming language and hands‐on experience with MIDlet development
environment.
This document focuses on Samsung Native Text Input and therefore explaining the Java
ME technology is out of the scope of this document.

Document History:

Date Version Comment

04/02/09 0.9 Draft

Abbreviations:

Java ME Java Micro Edition
MIDP Mobile Information Device Profile
NTI Native Text Input
GTB Global Toolbar
JAD Java Application Descriptor
UI User Interface

Installation Guide – v 0.9 Page 3 of 15

 Information Guide

Table of Contents

Introduction... 5

Overview ... 5

Native Text Input using Textfield and Textbox ... 6

For displaying Native Text Input... 7

Steps for Optimization... 8

Procedure for displaying Samsung Native Text Input ... 9

Native Text Input with optimization .. 9

Native Text Input without optimization... 11

Sample Code Example ... 13

Table of Figures

Figure 1: Textbox with GTB .. 5

Figure 2: Textbox with Java Key Pad... 5

Figure 3: Text Box with Virtual Keypad (NTI) ... 6

Figure 4: Numeric GTB Textfield to Virtual Keypad (NTI).. 7

Figure 5: Normal GTB Textbox to Virtual Keypad (NTI) ... 7

Figure 6: Invoking NTI without optimization.. 8

Figure 7: Invoking NTI with Optimization... 8

Figure 8: Initial Form Screen... 10

Figure 9: Virtual Keypad (NTI) .. 11

Figure 10: Initial Form Screen ... 12

Figure 11: Normal GTB TextBox .. 12

Figure 12: Virtual Keypad (NTI) .. 13

Installation Guide – v 0.9 Page 4 of 15

 Information Guide

Introduction

Samsung Native Text Input (NTI) is mostly available with touch‐based Samsung devices.
NTI provides larger virtual keypad for user inputs navigation. Non Touch based phones
contain normal keypad, which allows user for navigation and text inputs (mostly
hardware based). In order to facilitate similar user experience touch based phones in
Samsung are loaded with NTI. This document explains the user inputs and navigations
from Java ME prospective on Samsung handsets. This document does not explain the
non touch based phones navigation and text inputs.

Overview

There are three modes of navigation and text inputs for Textbox.

1. Normal Textbox having Global Toolbar (GTB) navigation.

Figure 1: Textbox with GTB

2.After clicking the key shown as “123ʺ of Global Toolbar (GTB) will lead to following
screen known as Textbox with Java keypad. Figure 2 is referred as Java Key Pad.

Figure 2: Textbox with Java Key Pad

Installation Guide – v 0.9 Page 5 of 15

 Information Guide

3. After clicking the textbox directly, virtual keypad will appear as shown in Figure 3.
This virtual keypad is called as Samsung Native Text Input.

Figure 3: Text Box with Virtual Keypad (NTI)

Native Text Input using Textfield and Textbox

Textfield shown below in the figure 4 (Numeric GTB Textfield) is an item in the form.
Textbox is a place where you enter text, digits etc. It is displayable object. Textbox can be
invoked as:

{
 …
 Display display=Display.getDisplay(this);
 TextBox textBox = new TextBox(title, ʺʺ, 50, TextField.ANY);
 Textfield can be invoked as:

 TextField textfield= new TextField(title, ʺʺ, 50, TextField.ANY);
 Form form=new Form(“TextField”);
 display.setCurrent(textbox/form);
 …
}

In touch‐based devices, there are two ways to enter the characters:

1. Focus on the textfield / textbox and press the GTB that is present in the lower portion
of the screen. GTB is visible for all the MIDlets by default and the same can be removed
by adding MIDlet‐TouchSupport attribute in JAD with value true.

MIDlet‐TouchSupport: true

2. Click the textfield / textbox directly in the form. Samsung Native Text Input is invoked.
It has good UI and with bigger keys for better navigation and user input.

Installation Guide – v 0.9 Page 6 of 15

 Information Guide

Figure 4: Numeric GTB Textfield to Virtual Keypad (NTI)

Figure 5: Normal GTB Textbox to Virtual Keypad (NTI)

For displaying Native Text Input

Optimization is applicable for textbox and not for textfield. When a MIDlet developer
displays the textbox as shown below:

{
 …
 Display display=Display.getDisplay(this);
 TextBox textBox = new TextBox(title, ʺʺ, 50, TextField.ANY);
 display.setCurrent(textbox);
 …
}

It shall display Textbox with blue screen i.e. Normal Textbox with GTB. If user clicks on
this textbox, Samsung Native Text Input (NTI) appears. NTI has rich UI and bigger keys
for navigation and user inputs.

Native Text Input before optimization is as follows:

Installation Guide – v 0.9 Page 7 of 15

 Information Guide

Figure 6: Invoking NTI without optimization

By optimizing this process, Samsung Native Text Input can be displayed after invoking
textbox. It leaves the Normal GTB Textbox (which is middle in the picture. See Figure 6)
so that users directly jump to Samsung Native Text Input mode. See Figure 7 that shows
the NTI after optimization.

Figure 7: Invoking NTI with Optimization

Steps for Optimization:

Title of the textbox should start with “__HIDDEN”.

{
 TextBox textBox = new TextBox(“__HIDDEN:Title”, ʺʺ, 50, TextField.ANY);
}

When MIDlet developer invokes the Textbox object the Samsung implementation will
ensure of removing the “__HIDDEN” string from the title and will leave the Normal
GTB textbox to display directly Samsung Native Text Input.

{
 …

Installation Guide – v 0.9 Page 8 of 15

 Information Guide

 display.setCurrent(textbox);
 …

}

There should be only two commands in the textbox. One should be Command.OK and
another Command.CANCEL

{
 …

 textBox.addCommand(CMD_OK);
 textBox.addCommand(CMD_CANCEL);
 …
}

Procedure for displaying Samsung Native Text Input

There are two ways in which NTI can be displayed:

 NTI with optimization
 NTI without optimization

Native Text Input with optimization

Create Form class object.

Form mainForm = new Form (ʺSelect a Text Box Typeʺ);

Then create a Choicegroup object and append it in the Form class.

static final string [] textBoxLabels = { ʺ__HIDDEN:Upper Caseʺ, ʺ__HIDDEN:Lower
 Caseʺ,ʺ__HIDDEN:Default Caseʺ };
Image[] imageArray = null;
ChoiceGroup types = new ChoiceGroup(ʺChoose typeʺ, Choice.EXCLUSIVE,
 textBoxLabels, imageArray);
mainForm.append(types);

Add commands to Form class as follows:

mainForm.addCommand(CMD_SHOW);
mainForm.addCommand(CMD_EXIT);

Now invoke the Form

mainForm.setCurrent(mainForm);

See Figure 8. The form is displayed on the screen.

Installation Guide – v 0.9 Page 9 of 15

 Information Guide

Figure 8: Initial Form Screen

Now select the Show [Command]. Create a textbox object in the commandAction method
when Show [Command] is called to display the textbox.

TextBox textBox = new TextBox(title, ʺʺ, 50, TextField.ANY);

Where title String should start with __Hidden parameter that helps Samsung
implementation to detect and display Samsung Native keypad thereby leaving numeric
GTB textbox.

In the textbox, add two commands named as OK [Command] and CANCEL
[Command] to display Samsung native keypad. Samsung Implementation will check
whether there are two commands added to the textbox and that are OK [Command] and
CANCEL [Command] and displays Samsung Native Keypad.

textBox.addCommand(CMD_OK);
textBox.addCommand(CMD_CANCEL);

Now when you call this method,

display.setCurrent(textBox);

Installation Guide – v 0.9 Page 10 of 15

 Information Guide

Samsung Native Keypad screen appears. See Figure 9.

Figure 9: Virtual Keypad (NTI)
Click OK soft key to return to main form class as shown below:

display.setCurrent(mainForm);

Native Text Input without optimization

Create Form class object.

Form mainForm = new Form (ʺSelect a Text Box Typeʺ);

Then create a ChoiceGroup object and append it in the Form class.

static final string [] textBoxLabels = { ʺUpper Caseʺ, ʺ Lower Caseʺ,
 ʺ Default Caseʺ };
Image[] imageArray = null;
ChoiceGroup types = new ChoiceGroup(ʺChoose typeʺ, Choice.EXCLUSIVE,
 textBoxLabels, imageArray);
mainForm.append(types);

Ad commands to Form class as follows:

mainForm.addCommand(CMD_SHOW);
mainForm.addCommand(CMD_EXIT);

Then invoke Form

mainForm.setCurrent(mainForm);

Installation Guide – v 0.9 Page 11 of 15

 Information Guide

Figure 10 shows the form displayed on the screen.

Figure 10: Initial Form Screen

Now select the Show [Command].

Show [Command] is used for displaying the textbox.

TextBox textBox = new TextBox(title, ʺʺ, 50, TextField.ANY);

The title of the string is not started with __Hidden.

Add commands to the Textbox.

textBox.addCommand(CMD_OK);
textBox.addCommand(CMD_CANCEL);

Now Textbox is invoked,

display.setCurrent(textBox);

A numeric GTB textbox will be displayed. See Figure 11.

Figure 11: Normal GTB TextBox

Installation Guide – v 0.9 Page 12 of 15

 Information Guide

On touching the textbox directly, Samsung Native Keypad screen appears. See Figure 12.
There are two commands OK [Command] and CANCEL [Command] at the bottom of
the screen.

Figure 12: Virtual Keypad (NTI)

Clicking on OK [Command] or Cancel [Command] soft key shall leads to textbox with
GTB.

Sample Code Example

The Sample example given below shows how Samsung Native Text Input is displayed
by avoiding the Numeric GTB textbox.

Class: TextBoxDemo.java

import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;
import javax.microedition.lcdui.Image;
import javax.microedition.lcdui.ChoiceGroup;
import javax.microedition.lcdui.Choice;
import javax.microedition.lcdui.TextBox;
import javax.microedition.lcdui.TextField;
import javax.microedition.midlet.MIDlet;

/* Midlet class which shows native text input*/
public class TextBoxDemo extends MIDlet implements CommandListener {

 /*this command is used to exit from the current application*/
 private static final Command CMD_EXIT = new Command(ʺExitʺ, Command.EXIT,
 1);
 //*this command is used to move to previous screen*/

Installation Guide – v 0.9 Page 13 of 15

 Information Guide

 private static final Command CMD_BACK = new Command(ʺBackʺ,
 Command.BACK, 1);
 /*this command is used to go to next screen*/
 private static final Command CMD_SHOW = new Command(ʺShowʺ,
 Command.SCREEN, 1);
 /*this command is used for getting acceptence*/
 private static final Command CMD_OK = new Command(ʺOKʺ, Command.OK, 1);
 /*this command is used to reject the current screen action*/
 private static final Command CMD_CANCEL = new Command(ʺCancelʺ,
 Command.CANCEL, 1);
 /*title of textbox stored in an String Array which starts with ʺ__HIDDENʺ String*/
 private static final String[] textBoxLabels
 = {ʺ__HIDDEN:Upper Caseʺ, ʺ__HIDDEN:Lower Caseʺ, ʺ__HIDDEN:Default Caseʺ};
 private Display display;
 private ChoiceGroup types;
 private Form mainForm;
 /**
 * Constructor
 */
 public TextBoxDemo() {
 display = Display.getDisplay(this);
 mainForm = new Form(ʺSelect a Text Box Typeʺ);
 mainForm.append(ʺSelect a text box typeʺ);
 Image[] imageArray = null;
 types = new ChoiceGroup(ʺChoose typeʺ, Choice.EXCLUSIVE, textBoxLabels,
 imageArray);
 mainForm.append(types);
 mainForm.addCommand(CMD_SHOW);
 mainForm.addCommand(CMD_EXIT);
 mainForm.setCommandListener(this);
 }

 public void startApp() {
 display.setCurrent(mainForm);
 }

 public void pauseApp() {
 /*all interupts can be handled here*/
 }

 public void destroyApp(boolean unconditional) {
 }

 public void commandAction(Command c, Displayable d) {
 if (c == CMD_EXIT) {
 destroyApp(false);
 notifyDestroyed();

Installation Guide – v 0.9 Page 14 of 15

Installation Guide – v 0.9 Page 15 of 15

Information Guide

 } else if (c == CMD_SHOW) {
 int index = types.getSelectedIndex();
 /*The selected case type will be taken as title for textbox*/
 String title = textBoxLabels[index];
 /*for diplaying textbox UI whose title starts with __HIDDEN*/
 TextBox textBox = new TextBox(title, ʺʺ, 50, TextField.ANY);
 if (index == 0) {
 textBox.setInitialInputMode(ʺMIDP_UPPERCASE_LATINʺ);
 } else if (index == 1) {
 textBox.setInitialInputMode(ʺMIDP_LOWERCASE_LATINʺ);
 }
 /*For bypassing the Java TextBox 2 commands are added CMD_OK and
 CMD_CANCEL*/
 textBox.addCommand(CMD_OK);
 textBox.addCommand(CMD_CANCEL);
 textBox.setCommandListener(this);
 display.setCurrent(textBox);
 } else if (c == CMD_BACK || c == CMD_OK || c == CMD_CANCEL) {
 display.setCurrent(mainForm);
 }
 }
}

