
Push Registry in Java ME
Version 0.9, Draft

API GUIDE

 API Guide

COPYRIGHT

Samsung Electronics Co. Ltd.
This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law. Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.
All other company and product names may be trademarks of the respective companies
with which they are associated.

API Guide – v 0.9 Page 2 of 14

 API Guide

About This Document

This document describes the Push Registry API and its importance in Java ME
application development followed by sample code snippet.

Scope
This document is intended for MIDP developers who want to develop mobile Java
applications. This document emphasis on Push Registry API and its implementation,
explaining the Java technology is out of the scope of this documentation.

Document History:

Date Version Comment

11/06/09 0.9 Draft

References:

1. Push Registry Article:
 http://developers.sun.com/mobility/midp/articles/pushreg/

Abbreviations:

MIDP Mobile Information Device Profile

AMS Application Management Software

SMS Short Message Service

TCP Transmission Control Protocol

UDP User Datagram Protocol

GCF Generic Connection Framework

API Guide – v 0.9 Page 3 of 14

http://developers.sun.com/mobility/midp/articles/pushreg/

 API Guide

Table of Contents

Introduction... 5

Overview ... 5

The Push Registry API... 6

How to do Push Registration.. 8

Sample code on PushRegistry... 10

Table of Figures

Figure 1: Activation of PushRegistry on an incoming connection .. 6

List of Tables

Table 1: PushRegistry class ... 6

Table 2: PushRegistry Exceptions .. 7

API Guide – v 0.9 Page 4 of 14

 API Guide

Introduction

A MIDlet is a MID Profile application which is implemented and controlled by the
Application Management Software (AMS). MIDP 2.0 came up with many new features
for developers to build innovative applications one of them being push registry. MIDP
2.0 PushRegistry feature provides a way for a MIDlet to respond to an inbound
connection irrespective of whether the MIDlet is running or not. If the MIDlet is not
open then MIDlet will be launched automatically to an incoming event.

PushRegistry can be used to respond to the following:

• Inbound wireless messaging connection such as SMS.

• Inbound network connection such as stream based TCP socket or packet based

UDP datagram.

• Timer initiated MIDlet activation.

For Example:

PushRegistry can be used to notify the user when a work item has been created against
his/her name, and user can respond to the work item as soon as possible.

Java MEʹs Push Registry easily pushes a message to a Java ME application and
automatically launches the application.

You can also set events for appointments that have been scheduled or you can set timer‐
based activation to schedule your MIDlet.

Overview

javax.microedition.io.PushRegistry is the component of the AMS that exposes the Push API
and keeps track of Push Registration.

Following steps show how PushRegistry works:

1. Connections like messaging (SMS) or Timer or network (socket, datagram) are
needed to register a MIDlet application.

2. Push Registry maintains list of inbound connections associated with the
application. Java ME application in the mobile device is registered for an event.

3. AMS monitors activity associated with the application.

API Guide – v 0.9 Page 5 of 14

 API Guide

4. When AMS detects an incoming connection associated with the MIDlet, AMS
starts the MIDlet if it is not opened or delivers the response to the running
MIDlet.

5. MIDlet now takes over responsibility for the connection and performs the steps

necessary for handling the incoming connection.

Figure 1 shows the activation of PushRegistry on an incoming connection.

Figure 1: Activation of PushRegistry on an incoming connection

The Push Registry API

The Push Registry comes in a single class, javax.microedition.io.PushRegistry and is part of
the Generic Connection Framework (GCF).

Table 1. describes the PushRegistry class.

Table 1: PushRegistry class

Class definition: public class PushRegistry extends Object
Method Description

getFilter() Returns the filter <Allowed‐Sender> for the specified push
connection.

getMidlet() Returns the MIDlet responsible for handling the specified Push
connection.

listConnections() Returns the list of registered Push connections for the MIDlet suite.

registerAlarm() Registers a timer‐based alarm to launch the MIDlet. Disables alarms
if an argument of zero is passed.

registerConnection() Registers a Push connection.

unregisterConnection() Unregisters a Push connection.

API Guide – v 0.9 Page 6 of 14

 API Guide

Table 2 shows the exceptions that are to be handled by the application when using
PushRegistry class methods.

Table 2: PushRegistry Exceptions

Exception Thrown by Description
ClassNotFoundException registerConnection()

registerAlarm()
The specified MIDlet class name
cannot be found in the current
MIDlet suite. In other words, the
specified MIDlet class name was
not defined (MIDlet‐<n> attribute)
in the descriptor file or the JAR file
manifest, or the MIDlet argument
is null.

registerConnection()

The platform does not support the
specified connection type for Push
inbound connections.

registerAlarm() The platform does not support
alarm‐based application launch.

ConnectionNotFoundException

Connector.open() The requested protocol does not
exist, or the connection could not
be made.

registerConnection() The connection string is not valid,
or the filter string is not valid.

IllegalArgumentException

Connector.open() One of the arguments is invalid.
registerConnection() The connection is already

registered, or there are insufficient
resources to handle the
registration.

IOException

Connector.open() A generic I/O error was
encountered.

registerConnection()

The specified MIDlet does not have
permission to register a
connection.

unregisterConnection() The specified connection was
registered by another MIDlet suite.

registerAlarm() The specified MIDlet does not have
permission to register an alarm.

SecurityException

Connector.open() The MIDlet has no permission to
use the requested protocol.

API Guide – v 0.9 Page 7 of 14

 API Guide

In MIDP 2.0, Security exception is a new feature. Here MIDP 2.0 applications must
request permissions before using privileged operations such as network connections or
the Push Registry. If you fail to request proper permissions, the platform may throw a
SecurityException.

How to do Push Registration

Push Registration requires three important parts to be specified. They are:

1. ConnectionURL

2. MIDlet name

3. Filter

1. ConnectionURL

This is a connection string of the type that is passed to a Connector.open() method.
ConnectionURL consists of protocol and port that describes the type of connection
and the port on which the MIDlet will receive the inbound connection.
Example: sms://16001 or datagram://:16002 or socket://:16003.

2. MIDlet name:

MIDlet name is where you associate a MIDlet to the inbound connection declared by
ConnectionURL. MIDlet name must be a fully qualified MIDlet class name and the
MIDlet must be declared as part of the MIDlet suite in the same application
descriptor.
Example: com.pr.PushMIDlet

3. Filter

Filter specifies the way to restrict the servers that can activate MIDlet. Two wildcards
characters * and ? are supported and may be used to restrict the servers. The *
matches any string including the empty string and ? matches any single character
Example 131.56.???.15 specify 3 characters at the 3rd position
and 131.56.*.15 specify 0 to 3 characters at the 3rd position

There are two ways to register the MIDlet application:

• Static Registration

• Dynamic Registration

API Guide – v 0.9 Page 8 of 14

 API Guide

Static Registration

During installation time, MIDlets are registered. This registration can be specified by
listing MIDlet‐Push attributes in the MIDlet suite’s JAD or manifest file.

If the address you are trying to register is already bound, installation will fail.
Uninstalling a MIDlet suite automatically unregisters the connection.

Given below are the parameters and their description, which should be added to make
MIDlet static registration for a specific Port.

MIDlet‐Push‐<n>:
This is the attribute name of Push Registration. Multiple push registrations can be
provided in a MIDlet suite. The numeric value for <n> starts from 1.
Example: MIDlet‐Push‐1, MIDlet‐Push‐2, MIDlet‐Push‐3 and so on.

ConnectionURL:
Enter the URL at which MIDlet has to be registered.
Example: sms: //:5000. This port number will be used by the server to trigger.

MIDletClassName:
Enter the name of the MIDlet, which should be triggered or activated. Example:
com.sms.PushMidlet;

AllowedSender:
A designated filter that restricts the senders that is valid for launching the requested
MIDlet
Wild card characters (*,?) can be also used here.
Example: 400.300.50.*, 300.300.20.1, *(Any IP address).

Example of added static Push Registration in JAD:

MIDlet‐Push‐1: sms://:5000, com.sms.PushMidlet, *;

Dynamic Registration

In dynamic registration, MIDlet is activated at runtime. Dynamic Registration of the port
has to be implemented in the code using Push Registry class. You can register both
dynamic connections and timer alarms at runtime, using Push Registry API.

API Guide – v 0.9 Page 9 of 14

 API Guide

Example:

In dynamic registration, add the following line of code:

PushRegistry.registerConnection(ʺsms://:5000ʺ,ʺ com.sms.PushMidlet ,*);

Unregistering Inbound Connection:
To unregister an inbound connection, use the unregisterConnection() method. Once the
MIDlet registration is done, it will remain until the MIDlet suite is uninstalled from the
device.

To unregister, dynamically add following code:

unregisterConnection(“sms://5000”);

The method returns true if it was successful and false if it fails to unregister the
connection.

Registering Timer Alarms:

To register a MIDlet for alarm, dynamically use

PushRegistry.registerAlarm(String midletName, long alarmTime)

registeralarm(String midletName, long alarmTime) method requires fully qualified class
name of the MIDlet to launch, and the time for the launch as parameters. Passing a time
of zero disables the alarm.
Only one outstanding alarm per MIDlet is supported, and invoking this method
overwrites any previously scheduled alarm.

Sample code on PushRegistry

import java.io.IOException;
import java.util.Vector;
import javax.microedition.io.ConnectionNotFoundException;
import javax.microedition.io.Connector;
import javax.microedition.io.PushRegistry;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.wireless.messaging.MessageConnection;
import javax.wireless.messaging.MessageListener;
import javax.wireless.messaging.TextMessage;

API Guide – v 0.9 Page 10 of 14

 API Guide

public class PushMidlet extends MIDlet implements CommandListener, MessageListener,
Runnable {

 Display display;
 Form form;

 /*MIDlet class name.*/
 private String midletName = this.getClass().getName();
 Command cmdExit = new Command(ʺExitʺ, Command.EXIT, 1);
 /*Command for registering alarm*/
 Command cmdAlarm = new Command(ʺRegister Alarmʺ, Command.ITEM, 0);
 /*Command for registering SMS Port*/
 Command cmdReg = new Command(ʺRegister SMSʺ, Command.ITEM, 0);
 /*Command for unregistering SMS Port*/
 Command cmdUnreg = new Command(ʺUNRegister SMSʺ, Command.ITEM, 0);
 Vector allConn = new Vector();
 Thread thread;
 String smsPort;
 boolean firstTime;

 public PushMidlet() {
 display = Display.getDisplay(this);
 smsPort = getAppProperty(ʺSMS‐Portʺ);
 firstTime = true;
 form = new Form(ʺEvent Listenerʺ);
 form.addCommand(cmdExit);
 form.addCommand(cmdAlarm);
 form.addCommand(cmdReg);
 form.addCommand(cmdUnreg);
 form.setCommandListener(this);
 }

 public void startApp() {
 getListConnections();
 display.setCurrent(form);
 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {
 }

 /*Check for list of connections recieved*/
 public void getListConnections() {
 String regConnections[];

API Guide – v 0.9 Page 11 of 14

 API Guide

 regConnections = PushRegistry.listConnections(true);

 if (regConnections.length != 0) {
 form.append(ʺLaunched using SMS Event to UN Register select UNRegister SMSʺ);

 for (int i = 0; i < regConnections.length; i++) {
 try {
 MessageConnection msgconn = (MessageConnection)
Connector.open(regConnections[i]);
 msgconn.setMessageListener(this);
 allConn.addElement(msgconn);
 } catch (SecurityException exSec) {
 System.out.println(ʺSecurityException=ʺ + exSec);
 } catch (IOException exIO) {
 System.out.println(ʺIOException==ʺ + exIO);
 }
 }

 } else {
 if (firstTime) {
 form.append(ʺManually launchedʺ);
 form.append(ʺHere you can select Register and Un Register SMS also Register Alarm
Dynamicallyʺ);
 firstTime = false;
 }
 regConnections = PushRegistry.listConnections(false);
 }

 }

 /*Register the Alarm for certain period for auto launch*/
 private void registerAlarm(final long duration) {
 new Thread() {

 public void run() {

 long alarmTiming = System.currentTimeMillis() + duration;

 try {
 /*to register MIDlet for a time period*/
 PushRegistry.registerAlarm(midletName, alarmTiming);
 } catch (ClassNotFoundException ex) {
 } catch (ConnectionNotFoundException ex) {
 }
 }
 }.start();

API Guide – v 0.9 Page 12 of 14

 API Guide

 }

 public void commandAction(Command cmd, Displayable disp) {
 if (cmd == cmdExit) {
 exitMidlet();

 } else if (cmd == cmdAlarm) {
 registerAlarm(40000);
 } else if (cmd == cmdReg) {

 RegisterSMSConn();
 } else if (cmd == cmdUnreg) {
 UnRegisterSMSConn();
 }
 }

 public void exitMidlet() {
 closeConnections();
 destroyApp(true);
 notifyDestroyed();
 }

 /*Make dynamic connection registered for a specific sms port*/
 public void RegisterSMSConn() {
 thread = new Thread(this);
 thread.start();

 }

 public void run() {
 try {
 /*To register Midlet for a port number*/
 PushRegistry.registerConnection(ʺsms://:ʺ + smsPort, midletName, ʺ*ʺ);
 closeConnections();
 getListConnections();
 } catch (ClassNotFoundException exe) {
 } catch (IOException ex) {
 }
 }

 /*To unregister the port dynamically*/
 public void UnRegisterSMSConn() {
 PushRegistry.unregisterConnection(ʺsms://:ʺ + smsPort);
 }

 public void closeConnections() {

API Guide – v 0.9 Page 13 of 14

 API Guide – v 0.9 Page 14 of 14

API Guide

 if (allConn != null) {
 while (allConn.isEmpty() == false) {
 MessageConnection msgConn =
 (MessageConnection) allConn.firstElement();
 if (msgConn != null) {
 try {
 msgConn.setMessageListener(null);
 msgConn.close();
 } catch (Exception exp) {
 }
 }
 allConn.removeElementAt(0);
 }
 }
 }

 /* Invokes when recieved message on specify port*/
 public void notifyIncomingMessage(MessageConnection msgConn) {

 TextMessage message = null;
 try {
 message = (TextMessage) msgConn.receive();
 String sendAddr = message.getAddress();
 form.setTitle(sendAddr);
 String messageText = message.getPayloadText();
 form.append(messageText);
 } catch (IOException ex) {
 form.append(ʺException hereʺ + ex);
 }

 }
}

	Scope
	Abbreviations:

