[image: image1.jpg]aSI\MSUNG

mobile innovakor

[image: image3.jpg]¢Q SNAMSUNG

Record Management System

 Version 0.6, Draft

[image: image4.png]? SAMSUNG

mabile innovakar

 INFORMATION GUIDE
 COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions, use or disclosure of this material, or any part thereof, is strictly prohibited and is a violation under the Copyright Law Samsung Electronics reserves the right to make changes in specifications at any time and without notice. The information furnished by Samsung Electronics in this material is believed to be accurate and reliable, but is not warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of Sun Microsystems.

All other company and product names may be trademarks of the respective companies with which they are associated.

About this Document

This document describes Record Management System with some sample code snippets.

Scope

This document is intended for Java ME developers who wish to develop Java ME applications. It assumes good knowledge of java programming language.

To know about Java ME basics and Java programming language, refer to the Knowledge Base under Samsung Mobile Innovator (SMI).

 http://innovator.samsungmobile.com/platform.main.do?platformId=3
Document History:

	Date
	Version
	Comment

	08/03/10
	0.6
	Draft

References:

User Interface Programming

http://developers.sun.com/mobility/midp/articles/databaserms/
http://www.ibm.com/developerworks/library/wi-rms/
Abbreviations:

	1
	Java ME
	Java Micro Edition

	2
	MIDP
	Mobile Information Device Profile

	3
	API
	Application Programming Interface

	4
	RMS
	Record Management System

Table of Contents

1Record Management System

5Introduction

5Overview

6Records:

6Record Stores:

7The RecordStore API

9Exceptions

10Basic RMS operations

10Create a RecordStore

10Add Record to RecordStore

11Read Record from RecordStore

11Set Record into Record Store

11Delete Records form Record Store

12Enumerating Records

13Add Stream Record to Record Store

13Read Stream data from RecordStore

13Deleting the Record Store

14Interface RecordComparator API

14Interface RecordFilter API

15Interface RecordListener API

16Sample code snippet:

 Table of Figures

6Figure 1 : Overview of Java ME RMS and MIDlet interfacing

Introduction
Java ME enabled devices do not have robust files system to save application data. Therefore Record Management store is used to create file system like environment that is used to store and maintain persistence in Java ME enabled devices.
At the API level, a record store is represented by an instance of the

javax.microedition.rms.RecordStore class. All RMS classes and interfaces are defined in the javax.microedition.rms.*; package.
Overview
The Java ME Record Management System (RMS) provides a mechanism through which MIDlets can insert records, read records and search for particular records and sort records stored by the RMS.
A key subsystem of the Mobile Information Device Profile (MIDP) is the Record Management System (RMS), an application programming interface (API) that gives MIDP applications local, on-device data persistence.
The Java ME record management system (RMS) provides a mechanism through which MIDlets can persistently store data and retrieve it later. In a record-oriented approach, Java ME RMS comprises multiple record stores. An overview of Java ME RMS and MIDlet interfacing is given in Figure 1.
 [image: image2.jpg]Record Management System

MIDLet MIDLet

 Figure 1 : Overview of Java ME RMS and MIDlet interfacing
The key concepts of the Record Management System are:

Records:

A record is an individual data item. RMS places no restrictions on what goes into a record: a record can contain a number, a string, an array, an image -- anything that a sequence of bytes can represent.

In RMS a record doesn't have any fields. Or, to put it more precisely, a record consists of a single binary field of variable size. The responsibility for interpreting the contents of a record falls entirely on the application. RMS provides the storage and a unique identifier, nothing else. While this division of labor complicates things for applications, it keeps RMS small and flexible -- important attributes for a MIDP subsystem.
Record Stores:

A record store is an ordered collection of records. Records are not independent entities: each must belong to a record store, and all record access occurs through the record store. In fact, the record store guarantees that records are read and written atomically, with no possibility of data corruption.

When a record is created, the record store assigns it a unique identifier, an integer called the record ID. The first record added to a record store has a record ID of 1, the second a record ID of 2, and so on. A record ID is not an index: record deletions do not renumber existing records or affect the value of the next record ID. It basically store collection of records organized as rows (records) and columns (fields). Each row consists of two columns: One containing a unique integer that identifies the row in the record store.
	Record ID
	Data(Array of bytes)

Names are used to identify record stores within a MIDlet suite. A record store's name consists of 1 to 32 Unicode characters, and must be unique within the MIDlet suite that created the record store. In MIDP 1.0, record stores cannot be shared by different MIDlet suites. MIDP 2.0 optionally allows a MIDlet suite to share a record store with other suites, in which case the record store is identified by the names of the MIDlet suite and its vendor, along with the record store name itself.

Record stores also maintain time-stamp and version information so applications can discover when a record store was last modified. For close tracking, applications can register a listener to be notified whenever a record store is modified.

At the API level, a record store is represented by an instance of the javax.microedition.rms.RecordStore class.
The RecordStore API

All RMS classes and interfaces are defined in the javax.microedition.rms package. There are Four Interfaces and one Class in RecordStore API package as shown in table below
	Interfaces
	Description

	RecordComparator
	An interface defining a comparator which compares two records (in an implementation-defined manner) to see if they match or what their relative sort order is.

	RecordEnumeration
	An interface representing a bidirectional record store Record enumerator.

	RecordFilter
	An interface defining a filter which examines a record to see if it matches (based on application-defined criteria).

	RecordListener
	A listener interface for receiving Record Changed/Added/Deleted events from a record store.

RecordStore is only class in RecordStore API , a record store is represented by an instance of the javax.microedition.rms.RecordStore class.

Table below describes RecordStore class

	Methods
	Description

	addRecord(byte[] data, int offset, int numBytes)
	This method allows adding new record in a record store.

	addRecordStoreListener(RecordListener listener)

	Add the listener to the record store

	closeRecordStore()
	This method is called when MIDlet requests to have the record store closed

	deleteRecord(int recordId)
	This method is called to delete the record from the record store

	deleteRecordStore(String recordStoreName)
	This method is called when the MIDlet want to delete the record store

	enumerateRecords(RecordFilter filter, RecordComparator comparator, boolean keepUpdated)
	This method Returns an enumeration for traversing a set of records in the record store in an optionally specified order.

	getLastModified()
	Returns the time of the last Record modified

	getName()
	This method returns the name of the record store.

	getNextRecordID()
	 Returns the recordId of the next record to be added to the record store.

	getNumRecords()
	Returns the number of records currently in the record store.

	getRecord(int recordId)
	Returns a copy of the data stored in the given record.

	getRecord(int recordId, byte[] buffer, int offset)
	Returns the data stored in the given record.

	getRecordSize(int recordId)
	Returns the size (in bytes) of the MIDlet data available in the given record.

	getSize()
	Returns the amount of space, in bytes, that the record store occupies.

	getSizeAvailable()
	Returns the amount of additional room (in bytes) available for this record store to grow.

	getVersion()
	 Each time a record store is modified (by addRecord, setRecord, or deleteRecord methods) its version is incremented.

	listRecordStores()
	Returns an array of the names of record stores owned by the MIDlet suite.

	openRecordStore(String recordStoreName, boolean createIfNecessary)
	Open (and possibly create) a record store associated with the given MIDlet suite.

	openRecordStore(String recordStoreName, boolean createIfNecessary, int authmode, boolean writable)
	Open (and possibly create) a record store that can be shared with other MIDlet suites.

	openRecordStore(String recordStoreName, String vendorName, String suiteName)
	Open a record store associated with the named MIDlet suite.

	removeRecordListener(RecordListener listener)
	 Removes the specified RecordListener.

	setMode(int authmode, boolean writable)
	Changes the access mode for this RecordStore.

	setRecord(int recordId, byte[] newData, int offset, int numBytes)
	 Sets the data in the given record to that passed in.

Exceptions
The checked exceptions in package javax.microedition.rms are as shown in table
	Exceptions
	Description

	InvalidRecordIDException
	This exception is thrown when an operation cannot be performed because the record ID is invalid.

	RecordStoreFullException
	This exception is thrown when there is no more space available in the record store.

	RecordStoreNotFoundException
	This Exception is thrown when the MIDlet tries to non-existing record store.

	RecordStoreNotOpenException
	This Exception is thrown when the MIDlet is tries to access a record store which is already closed.

	RecordStoreException
	This Exception is thrown to indicate general Exceptions occurred in the record store operation.

Basic RMS operations
Create a RecordStore
To create a recordstore you can use RecordStore.openRecordStore() with the second parameter set to true.

 //open record if present else create a record

 RecordStore rs = null;

 try {

 rs = RecordStore.openRecordStore("RecordName", true);

 } catch (Exception exe) {

 //unable to open record or create record

 exe.printStackTrace();

 } finally{

try{

//to close the record store

 rs. closeRecordStore();
}catch(Exception ex){

ex. printStackTrace();

}

}
Close Record Store
To close the record store you can call closeRecordStore() it will close specific Record Store

...

try{

rs. closeRecordStore();

} catch (Exception ex){

}

…

Add Record to RecordStore
To add record get bytes of record and call addRecord() to add the record to the record store
…

 String str= "firstRecord";

 //get bytes of record

 byte[] rec = str.getBytes();

 try {

 // added record to recordstore

 rs.addRecord(rec, 0, rec.length);

 } catch (Exception e) {

 e.printStackTrace();

 }

…
Read Record from RecordStore
Set the array of bytes using the record size and call getRecord() method to retrieve the Record Data.
…

byte[] getData;

 try {

 for (int i = 1; i <= rs.getNumRecords(); i++) {

 getData = new byte[rs.getRecordSize(i)];

 rs.getRecord(i, getData, 0);

 System.out.println("RecordData=" + new String(getData));

 }

 } catch (Exception exe) {
}
…

Set Record into Record Store
Sets the data in the given record by passed Record ID & data in byte array format. After this method returns, a call to getRecord(int recordId) will return an array of numBytes size containing the data supplied here.
…
try{
byte []data= “rmsdata”.getBytes();

 rs.setRecord(1, data,0, data.length);

}catch(Exception ex){

}
…

Delete Records form Record Store
To delete the record of specific id call the deleteRecord(int recordID)
…
try{

 for(int i=rs. getNumRecords(); i>0;i--){

 rs.deleteRecord(i);
 }
} catch(Exception ex){

…

}
Enumerating Records
Instead of checking each record ID RMS to return you an enumeration of valid record IDs,using the RecordEnumeration interface.

hasNextElement() & nextRecordId() has use to move forward through the enumeration:
...

RecordStore rs = … //Open record store

RecordEnumeration enum = ... //take record enumeration
try {

 while(enum.hasNextElement()){

 int id = enum.nextRecordId();

 byte[] data = rs.getRecord(id);

 ... // do something here

 }

}

catch(RecordStoreException e){

 // handle the error here

}

...

To move backward, using hasPreviousElement() and previousRecordId(). Note that both nextRecordId() and previousRecordId() throw InvalidRecordIDException if a record is deleted from a record store while the enumeration is active, if it's not tracking changes to the record store.
Add Stream Record to Record Store
Different java data types to the RecordStore can be added by reading through streams

…

ByteArrayOutputStream byteOutStream = new ByteArrayOutputStream();

DataOutputStream dataOutStream = new DataOutputStream(byteOutStream);

dataOutStream.writeUTF(userName.getString());

dataOutStream.writeUTF(password.getString());

recordStore.addRecord(byteOutStream.toByteArray(),0,
 byteOutStream.toByteArray().length);

…

Read Stream data from RecordStore
…

byte[] userdata = recordStore.getRecord(1);
ByteArrayInputStream byteArrayStream = new ByteArrayInputStream(userdata);

DataInputStream dataInputStream = new DataInputStream(byteArrayStream);

logindata[0] = dataInputStream.readUTF();

logindata[1] = dataInputStream.readUTF();

dataInputStream.close();

byteArrayStream.close();
…

Deleting the Record Store
…

private final String S_LOGIN = “loginRS”;
…

try{

RecordStore.deleteRecordStore(S_LOGIN);

}catch(Exception ex){

}
…

Interface RecordComparator API
RecordComparator defining a comparator which compares two records (in an implementation-defined manner) to see if they match or what their relative sort order is. The application implements this interface to compare two candidate records. The return value must indicate the ordering of the two records. The compare method is called by RecordEnumeration to sort and return records in an application specified order
EQUIVALENT: In terms of search or sort order, the two records are the same.

FOLLOWS: In term of search or sort order left (first parameter) record follows the right (second parameter).

PRECEDES: In terms of search or sort order left (first parameter) record precedes the right (second parameter) record.
public class CompareRecord implements RecordComparator{

public int compare(byte[] rec1, byte[] rec2){

…

 If(…)

return EQUIVALENT;

else if(…)

return FOLLOWS;

else if(…)

return PRECEDES;
 …

}
}
Interface RecordFilter API
RecordFilter defining a filter which examines a record to see if it matches (based on an application-defined criteria). The application implements the match() method .

Returns true if record found

Return false if record not found
public class FilerRecord implements RecordFilter{

public boolean match(byte[] candidate){

if(…)

 return true;

 else

 return false;

}

}
Interface RecordListener API
A listener interface for receiving Record Changed/Added/Deleted events from a record store.
Here are the basic steps for working with a RecordListener:

· Open (create) a record store.

· Create a new listener

· Implement each method in the RecordListener interface
void recordAdded(RecordStore recordStore, int recordId)

void recordChanged(RecordStore recordStore, int recordId)

void recordDeleted(RecordStore recordStore, int recordId)
public class RecordUpdate implements RecordListener{

 …

public void recordAdded(RecordStore recordStore,

 int recordId){

}

public void recordChanged(RecordStore recordStore,

 int recordId){

}

public void recordDeleted(RecordStore recordStore,

 int recordId){

}

 …

}
Sample code snippet:
import javax.microedition.midlet.MIDlet;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Form;

import javax.microedition.lcdui.TextField;

import javax.microedition.lcdui.Alert;

import javax.microedition.lcdui.AlertType;

import javax.microedition.rms.RecordStore;

import java.io.ByteArrayInputStream;

import java.io.DataInputStream;

import java.io.ByteArrayOutputStream;

import java.io.DataOutputStream;

public class LoginMidlet extends MIDlet implements CommandListener{

 private final Command cmdExit = new Command("Exit",Command.EXIT,1);

 private final Command cmdSave = new Command("Save",Command.ITEM,1);

 private final String S_LOGIN ="loginRS";

 private Display display = null;

 private Form loginForm = null;

 private TextField userName = null;

 private TextField password = null;

 private String logindata[]=null;

 private RecordStore recordStore = null;

 private Alert alert = null;

 public LoginMidlet(){

 init();

 logindata = openRecordStore();

 closeRecord();

 if(logindata!=null){

 userName.setString(logindata[0]);

 password.setString(logindata[1]);

 }

 display.setCurrent(loginForm);

 }

 public void startApp() {

 }

 public void pauseApp() {

 }

 public void destroyApp(boolean unconditional) {

 }

 private void init(){

 display = Display.getDisplay(this);

 loginForm = new Form("Login Screen");

 loginForm.addCommand(cmdExit);

 loginForm.addCommand(cmdSave);

 loginForm.setCommandListener(this);

 userName = new TextField("User Name",null,30,TextField.ANY);

 password = new TextField("Password",null,30,TextField.PASSWORD);

 loginForm.append(userName);

 loginForm.append(password);

 alert = new Alert("","",null,AlertType.INFO);

 }

 private void showMessage(String title,String text){

 alert.setTitle(title);

 alert.setString(text);

 alert.setTimeout(400);

 display.setCurrent(alert, loginForm);

 }

 private void closeRecord(){

 try {

 recordStore.closeRecordStore();

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

 private String[] openRecordStore(){

 String logindata[]=null;

 try {

 recordStore = RecordStore.openRecordStore(S_LOGIN, true);

 if(recordStore.getNumRecords()>0){

 logindata = new String[2];

 byte[] userdata = recordStore.getRecord(1);

 ByteArrayInputStream byteArrayStream = new ByteArrayInputStream(userdata);

 DataInputStream dataInputStream = new DataInputStream(byteArrayStream);

 logindata[0] = dataInputStream.readUTF();

 logindata[1] = dataInputStream.readUTF();

 dataInputStream.close();

 byteArrayStream.close();

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 return logindata;

 }

 private void deleteLoginRecord(){

 try {

 RecordStore.deleteRecordStore(S_LOGIN);

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

 private void addRecord(){

 try {

 deleteLoginRecord();

 openRecordStore();

 ByteArrayOutputStream byteOutStream = new ByteArrayOutputStream();

 DataOutputStream dataOutStream = new DataOutputStream(byteOutStream);

 dataOutStream.writeUTF(userName.getString());

 dataOutStream.writeUTF(password.getString());

 recordStore.addRecord(byteOutStream.toByteArray(),0, byteOutStream.toByteArray().length);

 closeRecord();

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 }

 public void commandAction(Command cmd,Displayable dis){

 if(cmd.equals(cmdExit)){

 destroyApp(true);

 notifyDestroyed();

 }else if(cmd.equals(cmdSave)){

 if((userName.getString().length()>0) && (password.getString().length()>0)){

 addRecord();

 showMessage("Info","Data Successfully Saved");

 }else{

 showMessage("Info","TextField is empty!!!");

 }

 }

 }

}
Information Guide – v 0.6

Page 20 of 20

