Record Management System

Version 0.6, Draft

JSI\MSUNG

mobile imnovaktaor

INFORMATION GUIDE

& Shmsun

COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.

All other company and product names may be trademarks of the respective companies
with which they are associated.

Information Guide —v 0.6 Page 2 of 20

aSI\MSUNG

mobile imnavakor

About this Document

This document describes Record Management System with some sample code snippets.

Scope

This document is intended for Java ME developers who wish to develop Java ME

applications. It assumes good knowledge of java programming language.

To know about Java ME basics and Java programming language, refer to the Knowledge

Base under Samsung Mobile Innovator (SMI).

http://innovator.samsungmobile.com/platform.main.do?platformId=3

Document History:

Date

Version

Comment

08/03/10

0.6

Draft

References:

User Interface Programming

http://developers.sun.com/mobility/midp/articles/databaserms/

http://www.ibm.com/developerworks/library/wi-rms/

Abbreviations:
1 Java ME Java Micro Edition
2 MIDP Mobile Information Device Profile
3 API Application Programming Interface
4 RMS Record Management System

Information Guide —v 0.6

Page 3 of 20

http://innovator.samsungmobile.com/platform.main.do?platformId=3
http://developers.sun.com/mobility/midp/articles/databaserms/
http://www.ibm.com/developerworks/library/wi-rms/

— Sl

Table of Contents

Record Management SYStemccccouiiiiiiniiiniiiiiiiii s 1
T OAUCHION . c.c ettt ettt ettt e e ettt e e s et e e s ssaabeesssabeesssssbeesssnsseessssseesssrseessnans 5
OVOTIVICW ettt sasssssssssssssssnsssnsssssssnsnsssssnnsnnnn 5
RECOTAS: ettt ettt ettt e e et ettt e e e s seeeesaaaeeeesssesesssasaaeeesssesensasaaeeesssenensneaneeess 6
RECOTA SEOTOS: ettt ettt ettt e e et e e s e e eateesesaaeeseseaseesessaaeesesaseessssneessssseessssnnees 6
The RECOTASTOTE AP ...coooeeeiiiieeeieeeeeeeeeeee ettt ettt e e s st e e s st e e sssabeesssabeesssaseesssaseesssnnes 7
EXCOPLIONS .o 9
Basic RMS OPerations...........ccccuiiiiiiiiiis et 10
CrEate @ ROCOTASIOTE «..eeeeeeeeeeeieeeeeeeeeee ettt e e e e ettt e e e e e s s s aaaeeeeeessssssssaseeeessssssnnseseees 10
Add Record t0 RECOTASLOTCevviiiiiieeeeeeiee ettt ettt ettt s rree e s esre e s sssebeessesaseessssaseeessnns 11
Read Record from ReCOTASIOTE.uvviieiiiieieeieeiee ettt ettt e st e s s ssaressssnanes 11
Set Record INtO RECOTA SEOTEocovuviiiiieeiie ettt ettt ettt s vt e s e snaeeas 12
Delete Records fOrmM RECOTA SEOT@coiuiieiieeeeeeeeeeeeeeee ettt eeeeeeeeeeeeeeeeeseeesnnnereees 12
Enumerating ReCOTAScoovviiiiiii 13
Add Stream Record t0 RECOTA StOT@.......uveiiieeieeeeeeeeeeeeeeee e e e e e e eeteeeeesaeeeseraeens 13
Read Stream data from ReCOTASEOTEvvvieiiiiieeiieeeieeeeeeeeet et e et e e eate s e sssate s e ssanens 14
Deleting the Record Stggas...&8... 48 .. & . &5 . 88 ... Sl ™. ™. 0. ... Sl 14
Interface RecordComparator APL...........ccoueuiiiiiiiiciicicccccce e 14
INterface RECOTATFIIEET APL...... ..ottt ettt eeeeete e e eeeaeeeseesateeseesaeeesesssaeesessneeesans 15
Interface RecOrdLIStENer APooo ittt ettt eeert e e e e sttt e sssaseessssseesssaseesssssseesons 16
Sample code SNIPPEL:cviiiiiiii s 17

Table of Figures

Figure 1 : Overview of Java ME RMS and MIDlet interfacing............ccccocooevvivniiiininiinnnns 6

Information Guide —v 0.6 Page 4 of 20

— Sl

Introduction

Java ME enabled devices do not have robust files system to save application data.
Therefore Record Management store is used to create file system like
environment that is used to store and maintain persistence in Java ME enabled
devices.

At the APl level, a record store is represented by an instance of the
javax.microedition.rms.RecordStore class. All RMS classes and interfaces are defined
in the javax.microedition.rms.”; package.

Overview

The Java ME Record Management System (RMS) provides a mechanism through
which MIDlets can insert records, read records and search for particular records
and sort records stored by the RMS.

A key subsystem of the Mobile Information Device Profile (MIDP) is the Record
Management System (RMS), an application programming interface (API) that
gives MIDP applications local, on-device data persistence.

The Java ME record management system (RMS) provides a mechanism through
which MIDlets can persistently store data and retrieve it later. In a record-
oriented approach, Java ME RMS comprises multiple record stores. An overview
of Java ME RMS and MIDlet interfacing is given in Figure 1.

Information Guide —v 0.6 Page 5 of 20

& SAMSUNG
mobile innovakor

Record Management System

MIDLet MIDLet

Figure 1: Overview of Java ME RMS and MIDlet interfacing

The key concepts of the Record Management System are:
Records:

A record is an individual data item. RMS places no restrictions on what goes into a
record: a record can contain a number, a string, an array, an image -- anything
that a sequence of bytes can represent.

In RMS a record doesn’t have any fields. Or, to put it more precisely, a record
consists of a single binary field of variable size. The responsibility for interpreting
the contents of a record falls entirely on the application. RMS provides the storage and
a unique identifier, nothing else. While this division of labor complicates things
for applications, it keeps RMS small and flexible -- important attributes for a
MIDP subsystem.

Record Stores:

A record store is an ordered collection of records. Records are not independent
entities: each must belong to a record store, and all record access occurs through
the record store. In fact, the record store guarantees that records are read and
written atomically, with no possibility of data corruption.

When a record is created, the record store assigns it a unique identifier, an
integer called the record ID. The first record added to a record store has a record

Information Guide —v 0.6 Page 6 of 20

— Sl

ID of 1, the second a record ID of 2, and so on. A record ID is not an index: record
deletions do not renumber existing records or affect the value of the next record
ID. It basically store collection of records organized as rows (records) and
columns (fields). Each row consists of two columns: One containing a unique
integer that identifies the row in the record store.

Record ID ‘ Data(Array of bytes)

Names are used to identify record stores within a MIDlet suite. A record store's
name consists of 1 to 32 Unicode characters, and must be unique within the
MIDlet suite that created the record store. In MIDP 1.0, record stores cannot be
shared by different MIDlet suites. MIDP 2.0 optionally allows a MIDlet suite to
share a record store with other suites, in which case the record store is identified
by the names of the MIDlet suite and its vendor, along with the record store
name itself.

Record stores also maintain time-stamp and version information so applications
can discover when a record store was last modified. For close tracking,
applications can register a listener to be notified whenever a record store is
modified.

At the API level, a record store is represented by an instance of the
javax.microedition.rms.RecordStore class.

The RecordStore API

All RMS classes and interfaces are defined in the javax.microedition.rms package.
There are Four Interfaces and one Class in RecordStore API package as shown in

table below

Interfaces Description

RecordComparator An interface defining a comparator
which compares two records (in an
implementation-defined manner) to see
if they match or what their relative sort
order is.

RecordEnumeration An interface representing a
bidirectional record store Record
enumerator.

RecordFilter An interface defining a filter which

Information Guide —v 0.6 Page 7 of 20

— Sl

examines a record to see if it matches
(based on application-defined criteria).

RecordListener A listener interface for receiving
Record Changed/Added/Deleted
events from a record store.

RecordStore is only class in RecordStore API, a record store is represented by an
instance of the javax.microedition.rms.RecordStore class.

Table below describes RecordStore class

Methods Description

addRecord(byte[] data, int offset, This method allows adding new

int numBuytes) record in a record store.

addRecordStoreListener(RecordListener Add the listener to the record store

listener)

closeRecordStore() This method is called when MIDlet
requests to have the record store
closed

deleteRecord(int recordld) This method is called to delete the

record from the record store
deleteRecordStore(String recordStoreName) | This method is called when the MIDlet
want to delete the record store

enumerateRecords(RecordFilter filter, This method Returns an enumeration

RecordComparator comparator, boolean for traversing a set of records in the

keepUpdated) record store in an optionally specified
order.

getLastModified() Returns the time of the last Record
modified

getName() This method returns the name of the
record store.

getNextRecordID() Returns the recordId of the next
record to be added to the record store.

getNumRecords() Returns the number of records
currently in the record store.

getRecord(int recordld) Returns a copy of the data stored in
the given record.

getRecord(int recordld, bytel[] buffer, Returns the data stored in the given

Information Guide —v 0.6 Page 8 of 20

B SAMSUNG

mobile imnavakor

int offset)

record.

getRecordSize(int recordld)

Returns the size (in bytes) of the
MIDlet data available in the given
record.

getSize()

Returns the amount of space, in bytes,
that the record store occupies.

getSizeAvailable()

Returns the amount of additional
room (in bytes) available for this
record store to grow.

getVersion()

Each time a record store is modified
(by addRecord, setRecord, or
deleteRecord methods) its version is
incremented.

listRecordStores()

Returns an array of the names of
record stores owned by the MIDlet
suite.

openRecordStore(String recordStoreName,
boolean createlfNecessary)

Open (and possibly create) a record
store associated with the given MIDlet
suite.

openRecordStore(String recordStoreName,
boolean createlfNecessary, int authmode,
boolean writable)

Open (and possibly create) a record
store that can be shared with other
MIDlet suites.

openRecordStore(String recordStoreName,

Open a record store associated with

String vendorName, String suiteName) the named MIDlet suite.
removeRecordListener(RecordListener Removes the specified
listener) RecordListener.

setMode(int authmode, boolean writable)

Changes the access mode for this
RecordStore.

setRecord(int recordld, byte[] newData,
int offset, int numBytes)

Sets the data in the given record to
that passed in.

Exceptions

The checked exceptions in package javax.microedition.rms are as shown in table

Exceptions

Description

InvalidRecord]IDException

This exception is thrown when an
operation cannot be performed because
the record ID is invalid.

Information Guide —v 0.6

Page 9 of 20

a SAMSUNG Information Guide
mobile innovakor

RecordStoreFullException This exception is thrown when there is
no more space available in the record
store.

RecordStoreNotFoundException This Exception is thrown when the
MIDlet tries to non-existing record
store.

RecordStoreNotOpenException This Exception is thrown when the
MIDlet is tries to access a record store
which is already closed.

RecordStoreException This Exception is thrown to indicate
general Exceptions occurred in the
record store operation.

Basic RMS operations

Create a RecordStore

To create a recordstore you can use RecordStore.openRecordStore() with the second
parameter set to true.

Information Guide —v 0.6

Page 10 of 20

a §='b\,5nn§=uwl.!£ Information Guide

Close Record Store

To close the record store you can call closeRecordStore() it will close specific
Record Store

Add Record to RecordStore

To add record get bytes of record and call addRecord() to add the record to the
record store

Read Record from RecordStore

Set the array of bytes using the record size and call getRecord() method to retrieve
the Record Data.

Information Guide —v 0.6 Page 11 of 20

a §='b\,5nn§=uwl.!£ Information Guide

Set Record into Record Store

Sets the data in the given record by passed Record ID & data in byte array
format. After this method returns, a call to gefRecord(int recordld) will return an
array of numBytes size containing the data supplied here.

Delete Records form Record Store

To delete the record of specific id call the deleteRecord(int recordID)

Page 12 of 20

Information Guide —v 0.6

a SAMSUNG Information Guide
mobile innovakor

Enumerating Records

Instead of checking each record ID RMS to return you an enumeration of valid
record IDs,using the Record Enumeration interface.

hasNextElement() & nextRecordld() has use to move forward through the
enumeration:

To move backward, using hasPreviousElement() and previousRecordld(). Note that
both nextRecordld() and previousRecordld() throw InvalidRecordIDException if a
record is deleted from a record store while the enumeration is active, if it's not
tracking changes to the record store.

Add Stream Record to Record Store

Different java data types to the RecordStore can be added by reading through
streams

Information Guide —v 0.6 Page 13 of 20

a §=.'b\;|=wn§=.uwl.!3 Information Guide

Read Stream data from RecordStore

Deleting the Record Store

Interface RecordComparator API

RecordComparator defining a comparator which compares two records (in an
implementation-defined manner) to see if they match or what their relative sort
order is. The application implements this interface to compare two candidate

Information Guide —v 0.6 Page 14 of 20

a SAMSUNG Information Guide
mobile innovakor

records. The return value must indicate the ordering of the two records. The
compare method is called by Record Enumeration to sort and return records in an
application specified order

EQUIVALENT: In terms of search or sort order, the two records are the same.

FOLLOWS: In term of search or sort order left (first parameter) record follows
the right (second parameter).

PRECEDES: In terms of search or sort order left (first parameter) record precedes
the right (second parameter) record.

Interface RecordFilter API

RecordFilter defining a filter which examines a record to see if it matches (based
on an application-defined criteria). The application implements the match()
method .

Returns true if record found
Return false if record not found

Information Guide —v 0.6 Page 15 of 20

a §=.'b\;|=wn§=.uwl.!3 Information Guide

Interface RecordListener API

A listener interface for receiving Record Changed/Added/Deleted events from a
record store.

Here are the basic steps for working with a RecordListener:

e Open (create) a record store.
¢ Create a new listener
o Implement each method in the RecordListener interface

void record Added(RecordStore recordStore, int recordld)
void recordChanged(RecordStore recordStore, int recordld)
void recordDeleted(RecordStore recordStore, int recordld)

Information Guide —v 0.6 Page 16 of 20

a §='b\,5nn§=uwl.!£ Information Guide
Yoo

Sample code snippet:

Information Guide —v 0.6 Page 17 of 20

a §=.'b\;|.=wn§=uwl.!£ Information Guide

Information Guide —v 0.6 Page 18 of 20

a §=.'b\;|.=wn§=uwl.!£ Information Guide

Information Guide —v 0.6 Page 19 of 20

a §=.'b\;|.=wn§=uwl.!£ Information Guide

Information Guide —v 0.6 Page 20 of 20

	Record Management System

