
Record Management System
 Version 0.6, Draft

 INFORMATION GUIDE

 Information Guide

 COPYRIGHT

Samsung Electronics Co. Ltd.
This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.
All other company and product names may be trademarks of the respective companies
with which they are associated.

Information Guide – v 0.6 Page 2 of 20

 Information Guide

About this Document

This document describes Record Management System with some sample code snippets.

Scope

This document is intended for Java ME developers who wish to develop Java ME
applications. It assumes good knowledge of java programming language.
To know about Java ME basics and Java programming language, refer to the Knowledge
Base under Samsung Mobile Innovator (SMI).

 http://innovator.samsungmobile.com/platform.main.do?platformId=3

Document History:

Date Version Comment

08/03/10 0.6 Draft

References:

User Interface Programming

http://developers.sun.com/mobility/midp/articles/databaserms/
http://www.ibm.com/developerworks/library/wi‐rms/

Abbreviations:

1 Java ME Java Micro Edition
2 MIDP Mobile Information Device Profile
3 API Application Programming Interface
4 RMS Record Management System

Information Guide – v 0.6 Page 3 of 20

http://innovator.samsungmobile.com/platform.main.do?platformId=3
http://developers.sun.com/mobility/midp/articles/databaserms/
http://www.ibm.com/developerworks/library/wi-rms/

 Information Guide

Table of Contents

Record Management System .. 1

Introduction... 5

Overview ... 5

Records: ... 6
Record Stores: ... 6
The RecordStore API ... 7
Exceptions ... 9

Basic RMS operations... 10

Create a RecordStore ... 10
Add Record to RecordStore .. 11
Read Record from RecordStore.. 11
Set Record into Record Store .. 12
Delete Records form Record Store ... 12
Enumerating Records .. 13
Add Stream Record to Record Store.. 13
Read Stream data from RecordStore ... 14
Deleting the Record Store ... 14

Interface RecordComparator API... 14

Interface RecordFilter API... 15

Interface RecordListener API.. 16

Sample code snippet: ... 17

 Table of Figures

Figure 1 : Overview of Java ME RMS and MIDlet interfacing... 6

Information Guide – v 0.6 Page 4 of 20

 Information Guide

Introduction

Java ME enabled devices do not have robust files system to save application data.
Therefore Record Management store is used to create file system like
environment that is used to store and maintain persistence in Java ME enabled
devices.

At the API level, a record store is represented by an instance of the
javax.microedition.rms.RecordStore class. All RMS classes and interfaces are defined
in the javax.microedition.rms.*; package.

Overview

The Java ME Record Management System (RMS) provides a mechanism through
which MIDlets can insert records, read records and search for particular records
and sort records stored by the RMS.

A key subsystem of the Mobile Information Device Profile (MIDP) is the Record
Management System (RMS), an application programming interface (API) that
gives MIDP applications local, on‐device data persistence.

The Java ME record management system (RMS) provides a mechanism through
which MIDlets can persistently store data and retrieve it later. In a record‐
oriented approach, Java ME RMS comprises multiple record stores. An overview
of Java ME RMS and MIDlet interfacing is given in Figure 1.

Information Guide – v 0.6 Page 5 of 20

 Information Guide

 Figure 1 : Overview of Java ME RMS and MIDlet interfacing

The key concepts of the Record Management System are:

Records:

A record is an individual data item. RMS places no restrictions on what goes into a
record: a record can contain a number, a string, an array, an image ‐‐ anything
that a sequence of bytes can represent.

In RMS a record doesnʹt have any fields. Or, to put it more precisely, a record
consists of a single binary field of variable size. The responsibility for interpreting
the contents of a record falls entirely on the application. RMS provides the storage and
a unique identifier, nothing else. While this division of labor complicates things
for applications, it keeps RMS small and flexible ‐‐ important attributes for a
MIDP subsystem.

Record Stores:

A record store is an ordered collection of records. Records are not independent
entities: each must belong to a record store, and all record access occurs through
the record store. In fact, the record store guarantees that records are read and
written atomically, with no possibility of data corruption.
When a record is created, the record store assigns it a unique identifier, an
integer called the record ID. The first record added to a record store has a record

Information Guide – v 0.6 Page 6 of 20

 Information Guide
ID of 1, the second a record ID of 2, and so on. A record ID is not an index: record
deletions do not renumber existing records or affect the value of the next record
ID. It basically store collection of records organized as rows (records) and
columns (fields). Each row consists of two columns: One containing a unique
integer that identifies the row in the record store.

Record ID Data(Array of bytes)

Names are used to identify record stores within a MIDlet suite. A record storeʹs
name consists of 1 to 32 Unicode characters, and must be unique within the
MIDlet suite that created the record store. In MIDP 1.0, record stores cannot be
shared by different MIDlet suites. MIDP 2.0 optionally allows a MIDlet suite to
share a record store with other suites, in which case the record store is identified
by the names of the MIDlet suite and its vendor, along with the record store
name itself.

Record stores also maintain time‐stamp and version information so applications
can discover when a record store was last modified. For close tracking,
applications can register a listener to be notified whenever a record store is
modified.

At the API level, a record store is represented by an instance of the
javax.microedition.rms.RecordStore class.

The RecordStore API

All RMS classes and interfaces are defined in the javax.microedition.rms package.
There are Four Interfaces and one Class in RecordStore API package as shown in
table below

Interfaces Description
RecordComparator An interface defining a comparator

which compares two records (in an
implementation‐defined manner) to see
if they match or what their relative sort
order is.

RecordEnumeration An interface representing a
bidirectional record store Record
enumerator.

RecordFilter An interface defining a filter which

Information Guide – v 0.6 Page 7 of 20

 Information Guide
examines a record to see if it matches
(based on application‐defined criteria).

RecordListener A listener interface for receiving
Record Changed/Added/Deleted
events from a record store.

RecordStore is only class in RecordStore API , a record store is represented by an
instance of the javax.microedition.rms.RecordStore class.

Table below describes RecordStore class

Methods Description
addRecord(byte[] data, int offset,
int numBytes)

This method allows adding new
record in a record store.

addRecordStoreListener(RecordListener
listener)

Add the listener to the record store

closeRecordStore() This method is called when MIDlet
requests to have the record store
closed

deleteRecord(int recordId) This method is called to delete the
record from the record store

deleteRecordStore(String recordStoreName) This method is called when the MIDlet
want to delete the record store

enumerateRecords(RecordFilter filter,
RecordComparator comparator, boolean
keepUpdated)

This method Returns an enumeration
for traversing a set of records in the
record store in an optionally specified
order.

getLastModified() Returns the time of the last Record
modified

getName() This method returns the name of the
record store.

getNextRecordID() Returns the recordId of the next
record to be added to the record store.

getNumRecords() Returns the number of records
currently in the record store.

getRecord(int recordId) Returns a copy of the data stored in
the given record.

getRecord(int recordId, byte[] buffer, Returns the data stored in the given

Information Guide – v 0.6 Page 8 of 20

 Information Guide
int offset) record.
getRecordSize(int recordId) Returns the size (in bytes) of the

MIDlet data available in the given
record.

getSize() Returns the amount of space, in bytes,
that the record store occupies.

getSizeAvailable() Returns the amount of additional
room (in bytes) available for this
record store to grow.

getVersion() Each time a record store is modified
(by addRecord, setRecord, or
deleteRecord methods) its version is
incremented.

listRecordStores() Returns an array of the names of
record stores owned by the MIDlet
suite.

openRecordStore(String recordStoreName,
boolean createIfNecessary)

Open (and possibly create) a record
store associated with the given MIDlet
suite.

openRecordStore(String recordStoreName,
boolean createIfNecessary, int authmode,
boolean writable)

Open (and possibly create) a record
store that can be shared with other
MIDlet suites.

openRecordStore(String recordStoreName,
String vendorName, String suiteName)

Open a record store associated with
the named MIDlet suite.

removeRecordListener(RecordListener
listener)

 Removes the specified
RecordListener.

setMode(int authmode, boolean writable) Changes the access mode for this
RecordStore.

setRecord(int recordId, byte[] newData,
int offset, int numBytes)

 Sets the data in the given record to
that passed in.

Exceptions

The checked exceptions in package javax.microedition.rms are as shown in table

Exceptions Description
InvalidRecordIDException This exception is thrown when an

operation cannot be performed because
the record ID is invalid.

Information Guide – v 0.6 Page 9 of 20

 Information Guide
RecordStoreFullException This exception is thrown when there is

no more space available in the record
store.

RecordStoreNotFoundException This Exception is thrown when the
MIDlet tries to non‐existing record
store.

RecordStoreNotOpenException This Exception is thrown when the
MIDlet is tries to access a record store
which is already closed.

RecordStoreException This Exception is thrown to indicate
general Exceptions occurred in the
record store operation.

Basic RMS operations

Create a RecordStore

To create a recordstore you can use RecordStore.openRecordStore() with the second
parameter set to true.

 //open record if present else create a record
 RecordStore rs = null;
 try {
 rs = RecordStore.openRecordStore(ʺRecordNameʺ, true);
 } catch (Exception exe) {
 //unable to open record or create record
 exe.printStackTrace();
 } finally{
 try{
 //to close the record store
 rs. closeRecordStore();

}catch(Exception ex){
ex. printStackTrace();

}

}

Information Guide – v 0.6 Page 10 of 20

 Information Guide

Close Record Store

To close the record store you can call closeRecordStore() it will close specific
Record Store

...
try{
rs. closeRecordStore();
} catch (Exception ex){

}
…

Add Record to RecordStore

To add record get bytes of record and call addRecord() to add the record to the
record store

…
 String str= ʺfirstRecordʺ;
 //get bytes of record
 byte[] rec = str.getBytes();
 try {
 // added record to recordstore
 rs.addRecord(rec, 0, rec.length);
 } catch (Exception e) {
 e.printStackTrace();
 }
…

Read Record from RecordStore

Set the array of bytes using the record size and call getRecord() method to retrieve
the Record Data.

…
byte[] getData;

Information Guide – v 0.6 Page 11 of 20

 Information Guide

Information Guide – v 0.6 Page 12 of 20

 try {
 for (int i = 1; i <= rs.getNumRecords(); i++) {
 getData = new byte[rs.getRecordSize(i)];
 rs.getRecord(i, getData, 0);
 System.out.println(ʺRecordData=ʺ + new String(getData));
 }
 } catch (Exception exe) {
}
…

Set Record into Record Store

Sets the data in the given record by passed Record ID & data in byte array
format. After this method returns, a call to getRecord(int recordId) will return an
array of numBytes size containing the data supplied here.

…
try{

byte []data= “rmsdata”.getBytes();
 rs.setRecord(1, data,0, data.length);

}catch(Exception ex){
}
…

Delete Records form Record Store

To delete the record of specific id call the deleteRecord(int recordID)
…
try{

 for(int i=rs. getNumRecords(); i>0;i‐‐){
 rs.deleteRecord(i);
 }
} catch(Exception ex){
…
}

 Information Guide
Enumerating Records

Instead of checking each record ID RMS to return you an enumeration of valid
record IDs,using the RecordEnumeration interface.

hasNextElement() & nextRecordId() has use to move forward through the
enumeration:

...
RecordStore rs = … //Open record store
RecordEnumeration enum = ... //take record enumeration

try {
 while(enum.hasNextElement()){
 int id = enum.nextRecordId();
 byte[] data = rs.getRecord(id);
 ... // do something here
 }
}
catch(RecordStoreException e){
 // handle the error here
}
...

To move backward, using hasPreviousElement() and previousRecordId(). Note that
both nextRecordId() and previousRecordId() throw InvalidRecordIDException if a
record is deleted from a record store while the enumeration is active, if itʹs not
tracking changes to the record store.

Add Stream Record to Record Store

Different java data types to the RecordStore can be added by reading through
streams

…

ByteArrayOutputStream byteOutStream = new ByteArrayOutputStream();
DataOutputStream dataOutStream = new DataOutputStream(byteOutStream);
dataOutStream.writeUTF(userName.getString());

Information Guide – v 0.6 Page 13 of 20

 Information Guide
dataOutStream.writeUTF(password.getString());
recordStore.addRecord(byteOutStream.toByteArray(),0,

 byteOutStream.toByteArray().length);

…

Read Stream data from RecordStore

…

byte[] userdata = recordStore.getRecord(1);
ByteArrayInputStream byteArrayStream = new
ByteArrayInputStream(userdata);
DataInputStream dataInputStream = new DataInputStream(byteArrayStream);
logindata[0] = dataInputStream.readUTF();
logindata[1] = dataInputStream.readUTF();
dataInputStream.close();
byteArrayStream.close();
…

Deleting the Record Store

…
private final String S_LOGIN = “loginRS”;

…
try{
 RecordStore.deleteRecordStore(S_LOGIN);
}catch(Exception ex){
}

…

Interface RecordComparator API

RecordComparator defining a comparator which compares two records (in an
implementation‐defined manner) to see if they match or what their relative sort
order is. The application implements this interface to compare two candidate

Information Guide – v 0.6 Page 14 of 20

 Information Guide
records. The return value must indicate the ordering of the two records. The
compare method is called by RecordEnumeration to sort and return records in an
application specified order

EQUIVALENT: In terms of search or sort order, the two records are the same.

FOLLOWS: In term of search or sort order left (first parameter) record follows
the right (second parameter).

PRECEDES: In terms of search or sort order left (first parameter) record precedes
the right (second parameter) record.

public class CompareRecord implements RecordComparator{

public int compare(byte[] rec1, byte[] rec2){
 …
 If(…)
 return EQUIVALENT;
 else if(…)
 return FOLLOWS;
 else if(…)
 return PRECEDES;
 …
 }

}

Interface RecordFilter API

RecordFilter defining a filter which examines a record to see if it matches (based
on an application‐defined criteria). The application implements the match()
method .

Returns true if record found
Return false if record not found

public class FilerRecord implements RecordFilter{

 public boolean match(byte[] candidate){

Information Guide – v 0.6 Page 15 of 20

 Information Guide

 if(…)
 return true;
 else
 return false;

}

}

Interface RecordListener API

A listener interface for receiving Record Changed/Added/Deleted events from a
record store.

Here are the basic steps for working with a RecordListener:

• Open (create) a record store.
• Create a new listener
• Implement each method in the RecordListener interface

void recordAdded(RecordStore recordStore, int recordId)
void recordChanged(RecordStore recordStore, int recordId)
void recordDeleted(RecordStore recordStore, int recordId)

public class RecordUpdate implements RecordListener{

 …
 public void recordAdded(RecordStore recordStore,
 int recordId){
 }
 public void recordChanged(RecordStore recordStore,
 int recordId){
 }
 public void recordDeleted(RecordStore recordStore,
 int recordId){
 }
 …

Information Guide – v 0.6 Page 16 of 20

 Information Guide
}

Sample code snippet:

import javax.microedition.midlet.MIDlet;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Form;
import javax.microedition.lcdui.TextField;
import javax.microedition.lcdui.Alert;
import javax.microedition.lcdui.AlertType;
import javax.microedition.rms.RecordStore;
import java.io.ByteArrayInputStream;
import java.io.DataInputStream;
import java.io.ByteArrayOutputStream;
import java.io.DataOutputStream;

public class LoginMidlet extends MIDlet implements CommandListener{

 private final Command cmdExit = new Command(ʺExitʺ,Command.EXIT,1);
 private final Command cmdSave = new Command(ʺSaveʺ,Command.ITEM,1);

 private final String S_LOGIN =ʺloginRSʺ;
 private Display display = null;
 private Form loginForm = null;
 private TextField userName = null;
 private TextField password = null;
 private String logindata[]=null;
 private RecordStore recordStore = null;
 private Alert alert = null;

 public LoginMidlet(){
 init();
 logindata = openRecordStore();
 closeRecord();
 if(logindata!=null){
 userName.setString(logindata[0]);
 password.setString(logindata[1]);

Information Guide – v 0.6 Page 17 of 20

 Information Guide
 }
 display.setCurrent(loginForm);
 }

 public void startApp() {
 }

 public void pauseApp() {
 }

 public void destroyApp(boolean unconditional) {

 }
 private void init(){

 display = Display.getDisplay(this);
 loginForm = new Form(ʺLogin Screenʺ);
 loginForm.addCommand(cmdExit);
 loginForm.addCommand(cmdSave);
 loginForm.setCommandListener(this);
 userName = new TextField(ʺUser Nameʺ,null,30,TextField.ANY);
 password = new TextField(ʺPasswordʺ,null,30,TextField.PASSWORD);
 loginForm.append(userName);
 loginForm.append(password);
 alert = new Alert(ʺʺ,ʺʺ,null,AlertType.INFO);

 }
 private void showMessage(String title,String text){
 alert.setTitle(title);
 alert.setString(text);
 alert.setTimeout(400);
 display.setCurrent(alert, loginForm);

 }
 private void closeRecord(){
 try {
 recordStore.closeRecordStore();
 } catch (Exception ex) {
 ex.printStackTrace();

Information Guide – v 0.6 Page 18 of 20

 Information Guide
 }
 }
 private String[] openRecordStore(){
 String logindata[]=null;
 try {

 recordStore = RecordStore.openRecordStore(S_LOGIN, true);
 if(recordStore.getNumRecords()>0){
 logindata = new String[2];
 byte[] userdata = recordStore.getRecord(1);
 ByteArrayInputStream byteArrayStream = new
ByteArrayInputStream(userdata);
 DataInputStream dataInputStream = new
DataInputStream(byteArrayStream);
 logindata[0] = dataInputStream.readUTF();
 logindata[1] = dataInputStream.readUTF();
 dataInputStream.close();
 byteArrayStream.close();
 }

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return logindata;
 }
 private void deleteLoginRecord(){
 try {

 RecordStore.deleteRecordStore(S_LOGIN);

 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
 private void addRecord(){
 try {
 deleteLoginRecord();
 openRecordStore();
 ByteArrayOutputStream byteOutStream = new ByteArrayOutputStream();

Information Guide – v 0.6 Page 19 of 20

Information Guide – v 0.6 Page 20 of 20

Information Guide
 DataOutputStream dataOutStream = new
DataOutputStream(byteOutStream);
 dataOutStream.writeUTF(userName.getString());
 dataOutStream.writeUTF(password.getString());
 recordStore.addRecord(byteOutStream.toByteArray(),0,
byteOutStream.toByteArray().length);
 closeRecord();
 } catch (Exception ex) {
 ex.printStackTrace();
 }

 }

 public void commandAction(Command cmd,Displayable dis){
 if(cmd.equals(cmdExit)){
 destroyApp(true);
 notifyDestroyed();
 }else if(cmd.equals(cmdSave)){
 if((userName.getString().length()>0) &&
(password.getString().length()>0)){
 addRecord();
 showMessage(ʺInfoʺ,ʺData Successfully Savedʺ);

 }else{
 showMessage(ʺInfoʺ,ʺTextField is empty!!!ʺ);
 }
 }
 }
}

	Record Management System

