[image: image1.jpg]aSI\MSUNG

mobile innovakor

[image: image23.jpg]aSI\MSUNG

mobile innovakor

Running Push Registry MIDlet using Samsung SDK
Version 0.9, Draft

[image: image24.jpg]¢Q SNAMSUNG

INFORMATION GUIDE
COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions, use or disclosure of this material, or any part thereof, is strictly prohibited and is a violation under the Copyright Law. Samsung Electronics reserves the right to make changes in specifications at any time and without notice. The information furnished by Samsung Electronics in this material is believed to be accurate and reliable, but is not warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of Sun Microsystems.

All other company and product names may be trademarks of the respective companies with which they are associated.

About This Document
This document describes how to run sample Push Registry MIDlet using Samsung SDK.
Scope

This document is intended for MIDP developers who wish to develop push registry based mobile Java applications.
Document History:
	Date
	Version
	Comment

	17/10/09
	0.9
	Draft

Abbreviations:

	MIDP
	Mobile Information Device Profile

	AMS
	Application Management Software

	SMS
	Short Message Service

	TCP
	Transmission Control Protocol

	UDP
	User Datagram Protocol

	GCF
	Generic Connection Framework

Table of Contents

5Introduction

6Overview

6Running PushRegistry sample MIDlet using Samsung SDK.

23Code Sample

Table of Figures
7Figure 1: PushMidlet Run via OTA

8Figure 2: PushMidlet in OTA Mode

9Figure 3: PushMidlet Installation Path

10Figure 4: PushMidlet Download

11Figure 5: PushMidlet Installation

12Figure 6: Confirmation Screen

13Figure 7: PushMidlet Launch

14Figure 8: PushMidlet Screen

15Figure 9: Register SMS

16Figure 10: Permissions

17Figure 11: PushMidlet Installed

18Figure 12: Launching WMA Console

18Figure 13: Utilities Screen

19Figure 14: WMA Console

20Figure 15: SMS Editor

21Figure 16: PushMidlet Launch Permissions

22Figure 17: PushMidlet SMS Permissions

23Figure 18: Displaying Received Message

Introduction

A MIDlet is a MID Profile application which is implemented and controlled by the Application Management Software (AMS). MIDP 2.0 came up with many new features for developers to build innovative applications one of them being PushRegistry. MIDP 2.0 PushRegistry feature provides a way for a MIDlet to respond to an inbound connection irrespective of whether the MIDlet is running or not. If the MIDlet is not open then MIDlet will be launched automatically to an incoming event.
PushRegistry can be used to respond to the following:

· Inbound wireless messaging connection such as SMS.
· Inbound network connection such as stream based TCP socket or packet based UDP datagram.
· Timer initiated MIDlet activation.
For Example:
PushRegistry can be used to notify the user when a work item has been created against his/her name, and user can respond to the work item as soon as possible.
Java ME's Push Registry easily pushes a message to a Java ME application and automatically launches the application.

You can also set events for appointments that have been scheduled or you can set timer-based activation to schedule your MIDlet.
Overview
javax.microedition.io.PushRegistry is the component of the AMS that exposes the Push API and keeps track of Push Registration.

Following steps show how PushRegistry works:
1. Connections like messaging (SMS) or Timer or network (socket, datagram) are needed to register a MIDlet application.

2. Push Registry maintains list of inbound connections associated with the application. Java ME application in the mobile device is registered for an event.
3. AMS monitors activity associated with the application.
4. When AMS detects an incoming connection associated with the MIDlet, AMS starts the MIDlet if it is not opened or delivers the response to the running MIDlet.
5. MIDlet now takes over responsibility for the connection and performs the steps necessary to handle the incoming connection.
For more information on PushRegistry please refer to the PushRegistry document in Developing section under Knowledge Base.
Running PushRegistry sample MIDlet using Samsung SDK.
PushMidlet shows two features:

1. How to dynamically register port for invoking MIDlet on incoming SMS.
2. How to register alarm.

Port information is stored in JAD file with key name “SMS-Port” and value as “16252”. Port from 16000 to 16999 is available to user. Following section shows the Push Registry MIDlet JAD file.
PushMidlet JAD File:

MIDlet-1: PushMidlet, PushMidlet.png, PushMidlet

MIDlet-Jar-Size: 3512

MIDlet-Jar-URL: PushMidlet.jar

MIDlet-Name: PushMidlet

MIDlet-Vendor: Unknown

MIDlet-Version: 1.0

MicroEdition-Configuration: CLDC-1.1

MicroEdition-Profile: MIDP-2.0

SMS-Port: 16252
Steps to run PushMidlet in Samsung SDK:
1. Create PushRegistry Project in Samsung SDK 1.1.1 for the Java ME Platform.
2. Select Samsung device that supports MIDP 2.0 and JSR 120 example a867.
3. Build the Project and then Run via OTA as shown in figure 1.
[image: image2.jpg]= Rt
'l e

Figure 1: PushMidlet Run via OTA
4. PushMidlet executes in OTA mode as shown in figure 2.
[image: image3.jpg]5555555555 - SCH.a861

ELECTRONICS

5 oot
E S

v >

SAMSUNG

Figure 2: PushMidlet in OTA Mode
5. Select “Install Application” from the list and select Launch Command.
6. Installation path appears on screen. Select Menu > Go to Command as shown in figure 3.
[image: image4.jpg]SAMSUNG

Figure 3: PushMidlet Installation Path
7. Downloading takes place as shown in Figure 4.
[image: image5.jpg]ELECTRONICS

Tealiah:
SAMSUNG

Figure 4: PushMidlet Download
8. Once downloaded it will ask for the installation. Install the PushMidlet.jad by selecting the Install command as shown in figure 5.
[image: image6.jpg]5555555555 - SCH.aB61. £

ELECTRONICS

SAMSUNG

Figure 5: PushMidlet Installation
9. Confirmation screen appears as shown in Figure 6. Select Install Command to install the Midlet.
[image: image7.jpg]o o e

T suig

ELECTRONICS

SAMSUNG

Figure 6: Confirmation Screen
10. On successful installation it shows the Launch screen as show in Figure 7. Select Yes Command
[image: image8.jpg]SAMSUNG

Figure 7: PushMidlet Launch
11. PushMidlet executes as shown in Figure 8. Select Menu > Register SMS Command as shown in Figure 9.
[image: image9.jpg]oo

ELECTRONICS

SAMSUNG

Figure 8: PushMidlet Screen
[image: image10.jpg]s

ELECTRONICS

SAMSUNG

Figure 9: Register SMS
12. Permission Alert appears as shown in Figure 10. Select Yes Command
[image: image11.jpg]RoNICS

SAMSUNG

Figure 10: Permissions
13. Once all permissions are done it registers the SMS port. Now exit the PushMidlet by selecting the Exit Command. On Exit it shows you the PushMidlet in the list as shown in Figure 11. Do not close the emulator.
[image: image12.jpg]oo

ELECTRONICS

——

SAMSUNG

Figure 11: PushMidlet Installed
14. Now select File > Utilities from Samsung SDK menu as shown in Figure 12. Utilities screen appears as shown in Figure 13. Select WMA Console and Press Launch button.
[image: image13.jpg]

Figure 12: Launching WMA Console
[image: image14.jpg]

Figure 13: Utilities Screen
15. WMA Console opens up as shown in Figure 14. It shows unique indentifier number. Each console and Emulator has a unique address that signifies the mobile number. E.g.”55 555 5555” is the address of Emulator and “555 555 5556” is the address of the WMA console.
[image: image15.jpg]aa:

Samsung

Figure 14: WMA Console
16. Select SendSMS button to send message to emulator with address “555 555 5555”. On selecting SendSMS button SMS Editor appears as shown in Figure 15. Select “555 555 5555” number from the client list and enter message your desired message and press Send button.
[image: image16.jpg]SamsuG

Figure 15: SMS Editor
17. PushMidlet gets activated on receiving message as shown in figure 16 and figure 17. It asks for the permissions. Select Yes command to proceed.
[image: image17.jpg]g

ELECTRONICS

SAMSUNG

Figure 16: PushMidlet Launch Permissions
[image: image18.jpg]Piusuvg

ELECTRONICS

SAMSUNG

Figure 17: PushMidlet SMS Permissions
18. “Welcome to Samsung Mobile Innovator Java” message appears as shown in figure 18.

[image: image19.jpg]ELECTRONICS

SAMSUNG

Figure 18: Displaying Received Message
Code Sample
Class: PushMidlet

import java.io.IOException;

import java.util.Vector;

import javax.microedition.io.ConnectionNotFoundException;

import javax.microedition.io.Connector;

import javax.microedition.io.PushRegistry;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.wireless.messaging.MessageConnection;

import javax.wireless.messaging.MessageListener;

import javax.wireless.messaging.TextMessage;

public class PushMidlet extends MIDlet implements CommandListener, MessageListener, Runnable {

 Display display;

 Form form;

 /*MIDlet class name.*/
 private String midletName = this.getClass().getName();

 Command cmdExit = new Command("Exit", Command.EXIT, 1);

 /*Command for registering alarm*/

 Command cmdAlarm = new Command("Register Alarm", Command.ITEM, 0);

 /*Command for registering SMS Port*/

 Command cmdReg = new Command("Register SMS", Command.ITEM, 0);

 /*Command for unregistering SMS Port*/

 Command cmdUnreg = new Command("UNRegister SMS", Command.ITEM, 0);

 Vector allConn = new Vector();

 Thread thread;

 String smsPort;

 boolean firstTime;

 public PushMidlet() {

 display = Display.getDisplay(this);

 smsPort = getAppProperty("SMS-Port");

 firstTime = true;

 form = new Form("Event Listener");

 form.addCommand(cmdExit);

 form.addCommand(cmdAlarm);

 form.addCommand(cmdReg);

 form.addCommand(cmdUnreg);

 form.setCommandListener(this);

 }

 public void startApp() {

 getListConnections();

 display.setCurrent(form);

 }

 public void pauseApp() {

 }

 public void destroyApp(boolean unconditional) {

 }

 /*Check for list of connections recieved*/

 public void getListConnections() {

 String regConnections[];

 regConnections = PushRegistry.listConnections(true);

 if (regConnections.length != 0) {

 form.append("Launched using SMS Event to UN Register select UNRegister SMS");

 for (int i = 0; i < regConnections.length; i++) {

 try {

 MessageConnection msgconn = (MessageConnection) Connector.open(regConnections[i]);

 msgconn.setMessageListener(this);

 allConn.addElement(msgconn);

 } catch (SecurityException exSec) {

 form.append("SecurityException=" + exSec);

 } catch (IOException exIO) {

 form.append("IOException==" + exIO);

 }

 }

 } else {

 if (firstTime) {

 form.append("Manually launched");

 form.append("Here you can select Register and Un Register SMS also Register Alarm Dynamically");

 firstTime = false;

 }

 regConnections = PushRegistry.listConnections(false);

 }

 }

 /*Register the Alarm for certain period for auto launch*/

 private void registerAlarm(final long duration) {

 new Thread() {

 public void run() {

 long alarmTiming = System.currentTimeMillis() + duration;

 try {

 /*to register MIDlet for a time period*/

 PushRegistry.registerAlarm(midletName, alarmTiming);

 } catch (ClassNotFoundException ex) {

form.append("\n ClassNotFoundException");

 } catch (ConnectionNotFoundException ex) {

form.append("\n ConnectionNotFoundException");

 }

 }

 }.start();

 }

 public void commandAction(Command cmd, Displayable disp) {

 if (cmd == cmdExit) {

 exitMidlet();

 } else if (cmd == cmdAlarm) {

 registerAlarm(4000);

 } else if (cmd == cmdReg) {

 RegisterSMSConn();

 } else if (cmd == cmdUnreg) {

 UnRegisterSMSConn();

 }

 }

 public void exitMidlet() {

 closeConnections();

 destroyApp(true);

 notifyDestroyed();

 }

 /*Make dynamic connection registered for a specific sms port*/

 public void RegisterSMSConn() {

 thread = new Thread(this);

 thread.start();

 }

 public void run() {

 try {

 /*To register Midlet for a port number*/

 PushRegistry.registerConnection("sms://:" + smsPort, midletName, "*");

 closeConnections();

 getListConnections();

 } catch (ClassNotFoundException exe) {

 } catch (IOException ex) {

 }

 }

 /*To unregister the port dynamically*/

 public void UnRegisterSMSConn() {

 PushRegistry.unregisterConnection("sms://:" + smsPort);

 }

 public void closeConnections() {

 if (allConn != null) {

 while (allConn.isEmpty() == false) {

 MessageConnection msgConn =

 (MessageConnection) allConn.firstElement();

 if (msgConn != null) {

 try {

 msgConn.setMessageListener(null);

 msgConn.close();

 } catch (Exception exp) {

 }

 }

 allConn.removeElementAt(0);

 }

 }

 }

 /* Invokes when recieved message on specify port*/

 public void notifyIncomingMessage(MessageConnection msgConn) {

 TextMessage message = null;

 try {

 message = (TextMessage) msgConn.receive();

 String sendAddr = message.getAddress();

 form.setTitle(sendAddr);

 String messageText = message.getPayloadText();

 form.append(messageText);

 } catch (IOException ex) {

 form.append("Exception here" + ex);

 }

 }

}
[image: image20][image: image21][image: image22]
 Information Guide – v 0.9

Page 4 of 28

