[image: image1.jpg]aSI\MSUNG

mobile innovakor

[image: image30.jpg]JSI\MSUNG

mobile innovakar

[image: image31.jpg]¢Q SNAMSUNG

Simulating LBS using Samsung SDK
 Version 0.9, Draft

[image: image32.png]? SAMSUNG

mabile innovakar

INFO
COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions, use or disclosure of this material, or any part thereof, is strictly prohibited and is a violation under the Copyright Law Samsung Electronics reserves the right to make changes in specifications at any time and without notice. The information furnished by Samsung Electronics in this material is believed to be accurate and reliable, but is not warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of Sun Microsystems.

All other company and product names may be trademarks of the respective companies with which they are associated.

About This Document
This document demonstrates how to test location based applications using the built in test facility provided in Samsung SDK.

Scope:
This document is for user who has knowledge of Java ME and needs a brief introduction on how to test location based applications using Samsung SDK.

Document History:

	Date
	Version
	Comment

	05/10/09
	0.9
	Draft

Abbreviations:

	JSR
	Java Specification Request

	API
	Application Programming Interface

	CLDC
	Connected Limited Device Configuration

	BTS
	Base Transceiver Station

	GPS
	Global Positioning System

	EEG
	External Event Generator

Table of Contents
5Introduction

5External Event Generator

12Running Scripts:

15Orientation:

17LocationMidlet Example

24Orientation Midlet Example

List of Figures
6Figure 1: Samsung SDK

7Figure 2: Selecting External Events

8Figure 3: External Event Generator Window

10Figure 4: Adding Location Information

11Figure 5: Location MIDlet Emulator

12Figure 6: Location MIDlet Output

14Figure 7: Script Playing

15Figure 8: Setting Orientation Values

16Figure 9: Orientation MIDlet

17Figure 10: Orientation MIDlet output

Introduction

Location API is an Optional Package javax.microedition.location that provides access to location based information. Location API provides a standard for developers to write mobile location-based applications. Location API gives information about the device's present physical location. It can be used with many Java ME profiles. The minimum platform is CLDC and targets are low memory devices.
Samsung SDK supports Location API and provides a built in facility to test location based application. Samsung SDK simulates the device providing location, orientation and landmark information to the application.
External Event Generator
Samsung SDK provides External Event Generator (EEG) Window for testing location applications. External Event Generator Window provides developer to test the location and orientation of the device. It also provides a script window through which script can be run.
EEG window is attached with the emulator and can be activated by selecting the External Events option from the MIDlet menu option located at the top of the emulator
To help demonstrate the support of Location API, Location MIDlet and Orientation MIDlet code example are provided at the end.
Once you successfully load the Location MIDlet in Samsung SDK, select specific Samsung Emulator that supports Location API such as a867 emulator. For demonstration we are using a867 emulator as this emulator supports Location API.
Following Steps shows how to use External Event Generator to test location Application.
Step 1: Run Location MIDlet by clicking on the Run option as shown in Figure 1.
[image: image2.png]

Figure 1: Samsung SDK
Step 2: Now when the emulator starts, you will need the External Event Generator (EEG) up to provide location data to the MIDlet. The EEG simulates data as if it was coming from the real device. On the emulator window, select External Events from the MIDlet menu option at the top of the emulator as shown in Figure 2.
[image: image3.png]SAMSUNG

Figure 2: Selecting External Events
This will cause the EEG window to appear. Select Location Tab as shown in Figure 3.
[image: image4.jpg]1B - 5555555555 - External Event Generator

Location Provider
State [Avalsbe

orientation
sate [supported

———————————

bt e e e s 14
o & 120 18 20 300 360

) ——————
e Tl
9 60 0 0w @ W@

— |
&

g0 120 .60]
) Hagretic orntation

pich

Location
Lane |
Longrude
e [
seed [

Figure 3: External Event Generator Window
Step 3: EEG window shows three sections Location Provider, Orientation and Location. One can set the state of Location Provider using the drop down box. The states that can be set are Available, Temporary Available and Out Of Service.
Similarly one can set the state of Orientation section using the drop down box provided. The states that can be set for orientation are Unsupported, Available and Unavailable. Orientation section also has Azimuth, Pitch and Roll slider through which one can set the values that would be reflected in the device or alternatively user can entered the desired value directly in the box provided beside each slider.
Similarly Location section has five different parts namely Latitude, Longitude, Altitude, Speed and Course to set the Location Information. Alternatively it also provides script box through which one can run the script that emulates the location information.
Information on how to use Orientation and how to use Script is explained later.
Set the desired location information in the Latitude, Longitude, Altitude, Speed and Course box as shown in Figure 4.

[image: image5.jpg]+5555555555 - External Event Generator

state [Avaiatle

state [Supported
o2

mih- FEECEEEEECr e
60 120 180 240 300 380

Foooora o O

0 60 90

=i
0
EEEEEEEmEEE
80 120 -60 0 60 120 180

) Magetic Orientation.

Location
Latiude (23,0

Longitude [34.0
(e (120

Figure 4: Adding Location Information
Step 4: Once the desired values are set, switch back to the emulator screen. Click on the locate command as shown in the Figure 5.
[image: image6.png]o

ELECTRONICS

Locston Demo

SAMSUNG

Figure 5: Location MIDlet Emulator
 Clicking on Locate Command causes the Location MIDlet to collect the values from the EEG window creating the illusion as of coming from real device. The output is shown in Figure 6.
[image: image7.png]5559555555 - SGH 2867
ks ot

i

ELECTRONICS

SAMSUNG

Figure 6: Location MIDlet Output
Running Scripts:

The EEG window can also be used to run a script. Script provides location information that changes the simulated geo-information provided to the emulator.
Scripts can be useful for MIDlets that have location listeners implemented. Location listener reacts to changes in location.
The EEG scripts are actually quite easy to write as they are written in XML and consist of a set of waypoints that are read and fed to the emulator, as you require. A small script example is provided below:
<waypoints>
<waypoint time="1200" latitude="10.238776738944633" longitude="50.19885522776621" altitude="100" />
<waypoint time="1500" latitude="14.238776738944633" longitude="54.19885522776621" altitude="200" />

<waypoint time="18500" latitude="18.238776738944633" longitude="58.19885522776621" altitude="300" />

<waypoint time="2100" latitude="22.238776738944633" longitude="62.19885522776621" altitude="400" />

</waypoints>

Samsung SDK provides you with a demo application called CityGuide that demonstrates the use of a location script with the EEG. CityGuide MIDlet has a script file “citywalk.xml”. Click on Browse button and go to CityGuide demo application and select the citywalk.xml file as shown in Figure 7.
[image: image8.jpg]1B - 5555555555 - External Event Generator

i o

0 @ 10 180 20 0 360

—_—

v
9 80 30 0 30 s 90

——————————

T e
480 120 -0 0 6 120 180

) gpeti orietation

Location
wane |
ongrude |
e |
soeed [

course [

soret [0 50Kt TappeiChyGudslctywalkon

Figure 7: Script Playing
Once selected the script Player gets enabled. Simply press the play button to run the script. Switch back to emulator screen to see the output. Location information from the script file would continuously be provided to the CityGuide MIDlet.
Orientation:
To test the Orientation, Run the Orientation MIDlet provided at the end of this article. Follow the steps 1 and 2 as explained previously in Location MIDlet.
Step 3: Entered the desired values in Azimuth, Pitch and Roll box or slide the slider to set the desired values of Azimuth, Pitch and Roll as shown in Figure 8.
[image: image9.jpg]1B - 5555555555 - External Event Generator

Location Provider
State [Avalsbe

orientation
sate [supported

———————————

bt e e e s 14
o & 120 18 20 300 360

) ——————
e Tl
9 60 0 0w @ W@

— |
&

g0 120 .60]
) Hagretic orntation

pich

Location
Lane |
Longrude
e [
seed [

Figure 8: Setting Orientation Values
Step 4: Once the desired values are set, switch back to the emulator screen. Click on the Result command as shown in the Figure 9.
[image: image10.png]5555555555 - SGH.
o

o

ELECTRONICS.

OrienationMidiet

SAMSUNG

Figure 9: Orientation MIDlet
 Clicking on Result Command causes the Orientation MIDlet to collect the values from the EEG window creating the illusion as of coming from real device. The output is shown in Figure 10.

[image: image11.png]Oranionhidl:
aemun 214
ecnar

a0

[sorentssonttagnec faise

SAMSUNG

Figure 10: Orientation MIDlet output
LocationMidlet Example
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.Form;

import javax.microedition.location.Criteria;

import javax.microedition.location.Location;

import javax.microedition.location.LocationException;

import javax.microedition.location.LocationProvider;

import javax.microedition.location.QualifiedCoordinates;

import javax.microedition.midlet.MIDlet;

public class LocationMidlet extends MIDlet implements CommandListener,Runnable{

 /* Define String Constants */

 private final String locate_String = "Locate";

 private final String exit_String = "Exit";

 private final String done_String = "Done";

 private final String locationForm_Title_String = "Location Demo";

 private final String locationInfo_String = "Press Locate Command to start “+

 “Application Demo\n";

 private final String exitInfo_String = "Press Exit Command to exit Application \n";

 /*LocationMidlet Display */

 private Display display;

 /*LocationMidlet Commands*/

 private Command cmd_Locate, cmd_Exit, cmd_Done;

 /*LocationMidlet Form*/
 private Form locationForm;

 /** location provider */

 private LocationProvider locationProvider = null;

 private Location location;

 private QualifiedCoordinates coordinates;

 private Thread locationThread;

 /*LocationMidlet Constructor*/

 public LocationMidlet() {

 /*Intialize Commands*/

 cmd_Locate = new Command(locate_String, Command.OK,1);

 cmd_Done = new Command(done_String, Command.OK,1);

 cmd_Exit = new Command(exit_String, Command.EXIT,2);

 /*Create Form*/

 locationForm = new Form(locationForm_Title_String);

 /*Appending location and Exit Information*/

 locationForm.append(locationInfo_String);

 locationForm.append(exitInfo_String);

 /*Adding commands to Location Form*/

 locationForm.addCommand(cmd_Exit);

 locationForm.addCommand(cmd_Locate);

 locationForm.setCommandListener(this);

 /*Intialize display*/

 display = Display.getDisplay(this);

 /*Create LocationProvider Instance*/

 locationProvider = null;

 createLocationProvider();

 if(locationProvider == null) {

 displayError();
 }

 }

 public void startApp() {

 /*display Form*/

 display.setCurrent(locationForm);

 }

 public void pauseApp() {

 /*your code to handle interrupt*/

 }

 public void destroyApp(boolean unconditional) {

 /*your code before notifyDestroyed method*/

 notifyDestroyed();

 }

 private void exitMidlet() {

 destroyApp(true);

 }

 private void displayError() {

 locationForm.deleteAll();

 locationForm.append("Unable to create LocationProvider");

 locationForm.addCommand(cmd_Exit);

 }

 /*Initialize LocationProvider using Default Criteria*/

 private void createLocationProvider() {

 if (locationProvider == null) {

 /*Constructs a Criteria object. All the fields are set to the default values*/

 Criteria criteria = new Criteria();

 try {

 locationProvider = LocationProvider.getInstance(criteria);

 } catch (LocationException le) {

 /*Unable to create Location Provider using this criteria*/

 le.printStackTrace();

 }

 }

 }

 private void createLocation() {

 try {

 // Get a location fix for 30 seconds timeout

 location = locationProvider.getLocation(30);

 } catch (LocationException ex) {

 ex.printStackTrace();

 } catch (InterruptedException ex) {

 ex.printStackTrace();

 }

 }

 private void getLocationResults() {

 coordinates = location.getQualifiedCoordinates();

 }

 private void displayLocationResults() {

 locationForm.append("Altitude:"+coordinates.getAltitude() +"\n");

 locationForm.append("Latitude:"+coordinates.getLatitude() +"\n");

 locationForm.append("Longitude:"+coordinates.getLongitude() +"\n");
 }

 public void commandAction(Command cmd, Displayable disp) {

 if(cmd == cmd_Locate) {

 /*Deleting previous data displayed*/

 locationForm.deleteAll();

 /*Removing exit and locate command*/

 locationForm.removeCommand(cmd_Exit);

 locationForm.removeCommand(cmd_Locate);

 /*Adding done command*/

 locationForm.addCommand(cmd_Done);

 /*Create Thread to avoid deadlock*/

 locationThread = new Thread(this);

 locationThread.start();

 }else

 if(cmd == cmd_Exit) {

 exitMidlet();

 }else

 if(cmd == cmd_Done) {

 locationForm.deleteAll();

 /*Remove done command*/

 locationForm.removeCommand(cmd_Done);

 /*Adding commands to Location Form*/

 locationForm.addCommand(cmd_Exit);

 locationForm.addCommand(cmd_Locate);

 /*Appending location and Exit Information*/

 locationForm.append(locationInfo_String);

 locationForm.append(exitInfo_String);

 }

 }

 public void run() {

 /*Get Location*/

 createLocation();

 /*Get Location Results*/

 getLocationResults();

 /*Display Results*/

 displayLocationResults();

 }

}
Orientation Midlet Example
import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.location.Orientation;

public class OrientationMidlet extends MIDlet implements CommandListener {

 private Command exitCmd = new Command("Exit", Command.EXIT, 1);

 private Command resultCmd = new Command("Result", Command.OK, 1);

 private Display display;

 private Form mainForm;
 /*OrientationMidlet Constructor*/

 public OrientationMidlet(){
 }

 protected void destroyApp(boolean unconditional){

 notifyDestroyed();

 }

 protected void pauseApp(){

 }

 protected void startApp()throws MIDletStateChangeException{

 display = Display.getDisplay(this);

 mainForm = new Form("OrientationMidlet");

 mainForm.append("Add values from External Event Generator “+

 {(MIDlet > External Events > Location) \n “+

 “Set Azimuth, Pitch and Roll values”+

 “and Select Result Command");

 mainForm.addCommand(resultCmd);

 mainForm.addCommand(exitCmd);

 mainForm.setCommandListener(this);

 display.setCurrent(mainForm);

 }

 private void getOrientation() {

try{

 mainForm.deteleAll();

 Orientation orientation = Orientation.getOrientation();

float azimuth = orientation.getCompassAzimuth();

float pitch = orientation.getPitch();

float roll = orientation.getRoll();

boolean isOrientationMagnetic = orientation.isOrientationMagnetic();

mainForm.append("azimuth "+azimuth+"\n");

mainForm.append("pitch "+pitch+"\n");

mainForm.append("roll "+roll+"\n");

mainForm.append("isOrientationMagnetic "+isOrientationMagnetic+"\n");

}catch(Exception e) {

e.printStackTrace();

}
 }

 public void commandAction(Command c, Displayable d) {

 if (c == exitCmd) {

 destroyApp(false);

 notifyDestroyed();

 }else

 if(c == resultCmd) {

getOrientation();

 }

 }

}

[image: image12][image: image13][image: image14][image: image15][image: image16][image: image17][image: image18][image: image19][image: image20][image: image21][image: image22][image: image23][image: image24][image: image25][image: image26][image: image27][image: image28][image: image29]
Information Guide – v 0.9

Page 25 of 26

