

Wireless Messaging API
(WMA)

Version 0.9, Draft

API GUIDE

 API Guide

COPYRIGHT

Samsung Electronics Co. Ltd.
This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.
All other company and product names may be trademarks of the respective companies
with which they are associated.

API Guide – v 0.9 Page 2 of 14

 API Guide

About This Document

This document will cover in brief description about WMA (Wireless Messaging API)
and demonstrates building sample WMA application for Samsung mobiles. It includes
the overview of WMA Architecture and APIs, followed by a Sample code snippet on
how to send and receive SMS.

Scope:

This document is intended for Java ME developers who wish to develop Java ME
applications. It assumes good knowledge of java programming language.

Document History:

Date Version Comment

05/02/09 0.9 Draft

References:

1. WMA 1.1 Specification:

http://jcp.org/en/jsr/detail?id=120

2. WMA

http://developers.sun.com/mobility/midp/articles/wma/

Abbreviations:

Java ME Java Platform Micro Edition
CLDC Connection Limited Device Configuration
WMA Wireless Messaging API
CBS Cell Broadcast Service
SMS Short Messaging Service
CGF Generic Connection Framework
URL Uniform Resource Locator
API Application Programming Interface

API Guide – v 0.9 Page 3 of 14

http://jcp.org/en/jsr/detail?id=120
http://developers.sun.com/mobility/midp/articles/wma/

 API Guide

Table of Contents

Introduction... 5

Overview ... 5

Cell Broadcast Service (CBS) .. 5

Short Messaging Service (SMS).. 5

API Description... 7

Interfaces.. 7

Sending and Receiving messages using WMA.. 8

Sending a text message.. 8

Receiving a text message... 9

Sample code snippet to send a text message .. 9

Sample code snippet to receive a Text Message... 12

Table of Figures

Figure 1: Generic Connection Framework. ... 6

Figure 2: Wireless Message API Components.. 7

API Guide – v 0.9 Page 4 of 14

 API Guide

Introduction

The Wireless Messaging API (WMAPI) is used for platform independent access to
wireless communication resources like SMS (Short Message Service) and CBS (Cell
Broadcast Service). The messaging API is based on the Generic Connection Framework
(GCF), which is defined in the Connected Limited Device Configuration (CLDC)
specification.
The Wireless Messaging API (WMA) is an optional package for the Java Platform Micro
Edition (Java ME).

Overview

The following messaging protocols are explained in this document:

 Cell Broadcast Service (CBS)

 Short Messaging Service (SMS)

Cell Broadcast Service (CBS)

 With the help of GSM cell broadcast service, messages can be sent to every
Mobile Station (MS). Examples: Mobile phones and Fax machines.

 Periodically the cell broadcast messages are repeated, so even entering the cell
after the first transmission message can be received to an MS.

 Binary data and ASCII are the two ways to send the data. In ASCII, length of text
is up to 15 pages with 93 characters per page; the text set only provides support
for ASCII messages.

Short Messaging Service (SMS)

 Short Messaging Service is a communication protocol for transmission of short
text/binary message to and from mobile phone originally defined as part of the
GSM series of standards.

 Maximum length of each message is 160 characters.

This document covers the Wireless Messaging API in brief. For more information, refer
to the specification defined by Java Community Process(JCP).. The base interface that is
implemented by all messages is named as javax.wireless.messaging.Message. It provides
methods for addresses and timestamps. Message interface provides methods that are
common for all messages.

API Guide – v 0.9 Page 5 of 14

 API Guide

The data part of the message consists of both text message and binary message, which
are represented by TextMessage and BinaryMessage interfaces, which are derived from
Message.
As shown in Figure 1 the message sending and receiving functionality is implemented
by a MessageConnection (derived from Connection interface of Generic Connection
Framework (GCF)). Figure 1 describes the relation of WMA with GCF.
The methods for sending and receiving messages can throw a java.lang.SecurityException,
if the application does not have the permission to perform these operations.

Figure 1: Generic Connection Framework.

API Guide – v 0.9 Page 6 of 14

 API Guide

API Description:

WMA API consists of interfaces in a single package, javax.wireless.messaging, which
defines all the APIs required for sending and receiving wireless text and binary
messages. Given below are WMA specific interfaces:

Message
BinaryMessage
TestMessage
MessageConnection
MessageListener

Figure 2 shows the Wireless Message API Components:

Figure 2: Wireless Message API Components

Interfaces

Message:

This is the base Interface. TextMessage and BinaryMessage are derived from Message
interface. It acts as a container holding address, payload for the message. Message has
methods for addresses and timestamps. These methods are getAddress(), getTimeStamp(),
setAddress().

BinaryMessage:

This is subinterface of Message. This interface is used for sending and receiving binary
message. Methods to set and get the binary payload data are getPayloadData(),
setPayloadData().

API Guide – v 0.9 Page 7 of 14

 API Guide

TextMessage:

This is subinterface of Message. This interface is used for sending and receiving text
message. Methods to set and get the text payload data are getPayloadText(),
setPayloadText().

MessageConnection:

This is subinterface of the GCF Connection, which contains a factory method for creating
new Message objects. MessageConnection contains method numberOfSegments() which
returns the number of segments of the underlying protocol that is needed to send a
specified Message. Other methods available in this interface are newMessage(), receive(),
send(), setMessageListener().

MessageListener:

This is a listener interface, which listens to the notification of incoming messages
through notifyIncomingMessage() method.

Sending and Receiving messages using WMA

Code walkthrough for sending and receiving messages using Wireless Messaging API:

Sending a text message

A client mode connection is created by passing a string identifying a destination address
to the Connector.open() method. This method returns a MessageConnection object as
follows:

/*full destination address*/
String addr = “sms://+5555555500:5432”;
MessageConnection msgconn = (MessageConnection) Connector.open(addr);

The address part contains telephone number with country code and port number, which
is application specific. The 3rd Generation Partnership Project (3GPP) specification for
SMS specifies the port numbers 16000‐16999 as available for applications. Some of the
handsets reserve ports (restricted port) for system. System reserved ports may not be
used by the Java ME applications. Using of non reserved port within the specified range
is recommended for developing Java ME applications.

Then pass MessageConnection.TEXT_MESSAGE constant in newMessage() method.
This method returns TextMessage object as follows:

TextMessage txtmsg =
 (TextMessage)msgconn.newMessage(MessageConnection.TEXT_MESSAGE);

API Guide – v 0.9 Page 8 of 14

 API Guide

Provides the payload text using Textmessage object.

txtmsg.setPayloadText(“Samsung Mobile Innovator”);

Uses MessageConnection object to send the text.
msgconn.send(msg);

Receiving a text message

Message recieving in Java ME is mainly associated with a port. To recieve message, a
server mode connection is created by passing a string that identifies an end point
(Protocol identifier, for example, a port number) to the Connector.open() method. This
method returns a MessageConnection object as follows:

/* address part*/
String addr = “sms://:5432”;
MessageConnection msgconn = (MessageConnection) Connector.open(addr);

The format of the URL connection string that identifies the address is specific to the
messaging protocol used.

To receive a message use receive() method which returns a Message object.

msg = conn.receive();

Check whether the message received is Textmessage and get the payload text.

if (msg instanceof TextMessage) {
 TextMessage tmsg = (TextMessage)msg;

 String receivedText = tmsg.getPayloadText();
}

Sample code snippet to send a text message

The sample code given below shows how to send a text message.

This code assumes that portNo attribute is added in JAD. Ex: portNo: 5000

Class: SendSMS

import javax.microedition.io.Connector;
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.lcdui.Form;
import javax.microedition.lcdui.TextBox;

API Guide – v 0.9 Page 9 of 14

 API Guide

import javax.microedition.lcdui.TextField;
import javax.microedition.midlet.MIDlet;
import javax.wireless.messaging.MessageConnection;
import javax.wireless.messaging.TextMessage;

public class SendSMS extends MIDlet implements CommandListener, Runnable {

 private static final String EXIT = ʺExitʺ;
 private static final String OK = ʺOkʺ;
 private static final String BACK = ʺBackʺ;
 private static final String SEND = ʺSendʺ;
 private Form form;
 private TextField textfield;
 private TextBox textbox;
 private Display display;
 private Thread thread;

 /*this command is used to exit from the current application*/
 Command cmdExit = new Command(EXIT, Command.EXIT, 2);
 /*command for acceptance to display next screen*/
 Command cmdOk = new Command(OK, Command.OK, 1);
 /*command which allows to move to previous screen*/
 Command cmdBack = new Command(BACK, Command.BACK, 2);
 /*command to send the entered message to destination*/
 Command cmdSend = new Command(SEND, Command.OK, 1);
 private String getPort = null;

 public SendSMS() {
 /*gets the port number from JAD*/
 getPort = this.getAppProperty(ʺportNoʺ);
 display = Display.getDisplay(this);
 form = new Form(ʺEnter Destination addressʺ);
 textfield = new TextField(ʺEnter Destination address:ʺ, ʺʺ, 20,
 TextField.PHONENUMBER);
 form.append(textfield);
 form.addCommand(cmdExit);
 form.addCommand(cmdOk);
 form.setCommandListener(this);
 }

 public void startApp() {
 display.setCurrent(form);
 }

 public void pauseApp() {
 /*all interupts can be handled here*/
 }

API Guide – v 0.9 Page 10 of 14

 API Guide

 public void destroyApp(boolean unconditional) {
 }

 public void commandAction(Command cmd, Displayable disp) {
 if (cmd == cmdExit && disp == form) {
 exitMidlet();
 } else if (cmd == cmdOk && disp == form) {
 textbox = new TextBox(ʺEnter Messageʺ, null, 256, TextField.ANY);
 textbox.addCommand(cmdBack);
 textbox.addCommand(cmdSend);
 textbox.setCommandListener(this);
 display.setCurrent(textbox);
 } else if (cmd == cmdBack && disp == textbox) {
 display.setCurrent(form);
 } else if (cmd == cmdSend && disp == textbox) {
 sendSMS();
 }
 }

 public void sendSMS() {
 /*recomeneded to start the players in a separate thread*/
 thread = new Thread(this);
 thread.start();
 }

 public void run() {
 MessageConnection msgconn = null;
 try {
 /*full destination address*/
 String address = ʺsms://ʺ + textfield.getString() + ʺ:ʺ + getPort;
 /*to open message connection*/
 msgconn = (MessageConnection) Connector.open(address);
 /*to send text message*/
 TextMessage textmsg = (TextMessage)
 msgconn.newMessage(MessageConnection.TEXT_MESSAGE);
 /*pay load text passed here*/
 textmsg.setPayloadText(textbox.getString());
 /*send the message*/
 msgconn.send(textmsg);
 } catch (Exception exe) {
 exe.printStackTrace();
 } finally {
 try {
 msgconn.close();
 } catch (Exception io) {
 io.printStackTrace();

API Guide – v 0.9 Page 11 of 14

 API Guide

 }
 exitMidlet();
 }
 }

 public void exitMidlet() {
 destroyApp(false);
 notifyDestroyed();
 }
}

Sample code snippet to receive a Text Message

The sample code given below shows how to receive a text message:

This code assumes that portNo attribute is added in JAD. Ex: portNo: 5000

Class: ReceiveSMS

import javax.microedition.io.Connector;
import javax.microedition.lcdui.Alert;
import javax.microedition.lcdui.Command;
import javax.microedition.lcdui.CommandListener;
import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Displayable;
import javax.microedition.midlet.MIDlet;
import javax.wireless.messaging.BinaryMessage;
import javax.wireless.messaging.Message;
import javax.wireless.messaging.MessageConnection;
import javax.wireless.messaging.MessageListener;
import javax.wireless.messaging.TextMessage;

public class ReceiveSMS extends MIDlet implements CommandListener,
 MessageListener, Runnable {

 private static final String EXIT = ʺExitʺ;
 private Display display;
 private Thread thread;
 private MessageConnection msgconn;
 private Message msg;
 private String senderAddress;
 private Alert recMess;

 /*this command is used to exit from the current application*/
 Command cmdExit = new Command(EXIT, Command.EXIT, 2);
 private String getPort = null;

API Guide – v 0.9 Page 12 of 14

 API Guide

 public ReceiveSMS() {
 /*gets the port number from JAD*/
 getPort = this.getAppProperty(ʺportNoʺ);
 display = Display.getDisplay(this);
 recMess = new Alert(ʺMessageʺ);
 recMess.setString(ʺWaiting for SMSʺ);
 recMess.setTimeout(Alert.FOREVER);
 recMess.addCommand(cmdExit);
 recMess.setCommandListener(this);
 }

 public void startApp() {
 display.setCurrent(recMess);
 try {
 /*port on which to receive sms*/
 String address = ʺsms://:ʺ + getPort;
 /*open connection*/
 msgconn = (MessageConnection) Connector.open(address);
 /*set listening mode*/
 msgconn.setMessageListener(this);
 /*need to start the players in a separate thread to
 avoid dead lock*/
 thread = new Thread(this);
 thread.start();
 } catch (Exception exe) {
 exe.printStackTrace();
 }

 }

 public void pauseApp() {
 thread = null;
 /*all interupts can be handled here*/
 }

 public void destroyApp(boolean unconditional) {
 thread = null;

 if (msgconn != null) {
 try {
 msgconn.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

API Guide – v 0.9 Page 13 of 14

 API Guide – v 0.9 Page 14 of 14

API Guide

 public void commandAction(Command cmd, Displayable disp) {
 if (cmd == cmdExit && disp == recMess) {
 exitMidlet();
 }
 }

 public void exitMidlet() {
 destroyApp(true);
 notifyDestroyed();
 }

 public void notifyIncomingMessage(MessageConnection msgconn) {
 thread = new Thread(this);
 thread.start();
 }

 public void run() {
 try {
 /*gets message object*/
 msg = msgconn.receive();
 if (msg != null) {
 /*gets address of the message received*/
 senderAddress = msg.getAddress();
 recMess.setTitle(ʺFrom: ʺ + senderAddress);
 /*check for the type of message received*/
 if (msg instanceof TextMessage) {
 recMess.setString(ʺRecieved Messsage: \nʺ + ((TextMessage) msg).getPayloadText());
 } else {
 /*get the binary data of the message*/
 byte[] data = ((BinaryMessage) msg).getPayloadData();

 /*wite here code to convert binary to text message*/

 }
 }
 } catch (Exception exe) {
 exe.printStackTrace();
 }
 }
}

