High Level Ul using
CustomlItem

Version 0.2, Draft

INFORMATION GUIDE

COPYRIGHT

Samsung Electronics Co. Ltd.

This material is copyrighted by Samsung Electronics. Any unauthorized reproductions,
use or disclosure of this material, or any part thereof, is strictly prohibited and is a
violation under the Copyright Law Samsung Electronics reserves the right to make
changes in specifications at any time and without notice. The information furnished by
Samsung Electronics in this material is believed to be accurate and reliable, but is not
warranted true in all cases.

Trademarks and Service Marks

The Samsung Logo is the trademark of Samsung Electronics. Java is the trademark of
Sun Microsystems.

All other company and product names may be trademarks of the respective companies
with which they are associated.

About This Document

This document gives an overview of High Level Item class CustomlItern and provides a
sample code snippet explaining the implementation of class CustomItern on Form.

Scope
This document is intended for Java ME developers wishing to develop Java ME

applications. It assumes good knowledge of java programming language.

Document History:

Date Version Comment

04/02/09 0.2 Draft

Reference:
1. MIDP 2.0 Specification:

http://jcp.org/en/jsr/detail?id=118

Abbreviations:

MIDP Mobile Information Device Profile
Ul User Interface

http://jcp.org/en/jsr/detail?id=118

Table of Contents

| HaXuaeTe LS Tai uTe) s NURNNRRRRN OO RO TRRRPR PR
OVETVICW eeiiieeeeeeee ettt et e e eeesaaeeeeesesssaaaaaeeeesssssasasaseeessssssssssstseeesessssssssteeessssssnsssnseeesssnnns

Sample code snippet for CustomItemcccceiiiiviiiiiiniiiii s

List of Tables

Table 1: CUStOMITEIN IMETIOAS. .. .eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt e e e e ee e et eeeeeeeeesssanaeeeesesenas

Introduction

MIDP 2.0 has introduced a new user interface class CustomlItem in javax.microedition.lcdui
package that is specially intended to create your own Items (UI element). Customltem
extends javax.microedition.lcdui.ltem. — Customltem is created by subclassing
javax.microedition.lcdui.CustomlItem class to create a new visual appearance and
interactive element.

Visual appearance includes sizing, rendering, choosing the colors, fonts and graphics.
User interaction is done by responding to events generated by keys, pointer actions and
traversal actions.

Overview

All Item objects have a label field; a string that identifies the item. Label is displayed
near the component on devices display. User can omit the label by passing null.

Subclass who extends the CustomlItem has to implement the first five abstract methods
shown in table 1.

Table 1: Customltem Methods

Sr.No Method Description

1 getMinContentHeight() Returns the minimal height of the content area.

2 getMinContentWidth() Returns the minimal width of the content area.

3 getPrefContentHeight(int | Returns the preferred height of the content area. A
width) tentative value for the opposite dimension “width”

is passed to aid in the height calculation. The
tentative value should be ignored if it is -1.

4 getPrefContentWidth(int | Returns the preferred width of the content

height) area. A tentative value for the opposite

dimension “height” is passed to aid

in the width calculation. The tentative value should
be ignored if it is -1.

5 paint(Graphics g, int Draws the item's content area, whose dimensions
width, int height) are given by the width and height parameters.

6 traverse(int dirn, int Called by the system when traversal has entered
viewportWidth, int the item or has occurred within the item.

viewportHeight, int[]
visRect_inout)

First, like other items, Customltem has the concept of the content size. Content size is
only the size of content area of Customltem. Content area is a rectangular area within
which the Customltem subclass paints and receives input events. It does not include
space consumed by labels and borders. Content area is a subset of Item’s total area. The
implementation is responsible for lying out, painting, and handling input events within
the area of the Item that is outside the content area. Label string is drawn and positioned
outside the content area by the system.

Second Items have the concept of minimum and preferred sizes. These include the total
area of the item. The minimum size is the smallest size at which the Item can function
and display its contents, though perhaps not optimally. The preferred size is generally a
size based on the Item's contents and is the smallest size at which no information is
clipped and text wrapping (if any) is kept to a tolerable minimum.

The first four methods shown in Table 1 deals with the minimum and preferred size of
the Item.

Third custom items rendering is done by implementing paint() method shown in Table 1.
The rendering part is very much the way canvases render. However, the height and
width parameters are passed along with the Graphics object. The height and width are
the current dimensions of the item’s content area. All drawing is done on this
dimensions and drawing origin is at the top left corner of the content area.

MIDP provides a mechanism for custom items to support traversal in a way that is
consistent and portable. The traverse() method will return true if the traversal is internal
and false if it should proceed out to another item in the form. The method's parameters
indicate the direction of traversal, the size of the viewable area, and other information
about the area. It will be up to the user to define when the traverse() method should
return false, resulting in the activation of the next item on the form. The direction value
of traversal will be one of the directional game actions defined in the Canvas class:
Canvas.UP, Canvas.DOWN, Canvas.LEFT, and Canvas.RIGHT, or the value
Customltem.NONE. If the value is NONE, some platform-specific event like a resizing of
the form caused item to gain the focus.

Sample code snippet for CustomItem

The sample code given below shows how to use CustomlItem class.

Class: CustomItemMIdlet.java

Class: NewForm.java

